CONTENTS

1 Introduction
 1.1 Contributing ... 1
 1.2 How to run the client .. 1
 1.3 Understanding the client in more depth 2

2 What is a Certificate?
 2.1 Certificates and Lineages 3

3 Get Certbot
 3.1 About Certbot .. 5
 3.2 System Requirements ... 6
 3.3 Alternate installation methods 6

4 User Guide
 4.1 Certbot Commands ... 12
 4.2 Getting certificates (and choosing plugins) 12
 4.3 Managing certificates ... 17
 4.4 Changing a Certificate’s Domains 18
 4.5 Where are my certificates? 22
 4.6 Pre and Post Validation Hooks 23
 4.7 Changing the ACME Server 25
 4.8 Lock Files .. 25
 4.9 Configuration file ... 25
 4.10 Log Rotation ... 26
 4.11 Certbot command-line options 26
 4.12 Getting help ... 39

5 Developer Guide
 5.1 Getting Started ... 42
 5.2 Code components and layout 44
 5.3 Coding style ... 46
 5.4 Use *certbot.compat.os* instead of *os* 46
 5.5 Mypy type annotations .. 47
 5.6 Submitting a pull request 47
 5.7 Asking for help ... 48
 5.8 Updating certbot-auto and letsencrypt-auto 48
 5.9 Updating the documentation 49
 5.10 Running the client with Docker 49
 5.11 Notes on OS dependencies 49

6 Packaging Guide ... 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Releases</td>
<td>51</td>
</tr>
<tr>
<td>6.2 Notes for package maintainers</td>
<td>52</td>
</tr>
<tr>
<td>7 Backwards Compatibility</td>
<td>53</td>
</tr>
<tr>
<td>8 Resources</td>
<td>55</td>
</tr>
<tr>
<td>9 API Documentation</td>
<td>57</td>
</tr>
<tr>
<td>9.1 certbot package</td>
<td>57</td>
</tr>
<tr>
<td>10 Indices and tables</td>
<td>109</td>
</tr>
<tr>
<td>Python Module Index</td>
<td>111</td>
</tr>
<tr>
<td>Index</td>
<td>113</td>
</tr>
</tbody>
</table>
Certbot is part of EFF’s effort to encrypt the entire Internet. Secure communication over the Web relies on HTTPS, which requires the use of a digital certificate that lets browsers verify the identity of web servers (e.g., is that really google.com?). Web servers obtain their certificates from trusted third parties called certificate authorities (CAs). Certbot is an easy-to-use client that fetches a certificate from Let’s Encrypt—an open certificate authority launched by the EFF, Mozilla, and others—and deploys it to a web server.

Anyone who has gone through the trouble of setting up a secure website knows what a hassle getting and maintaining a certificate is. Certbot and Let’s Encrypt can automate away the pain and let you turn on and manage HTTPS with simple commands. Using Certbot and Let’s Encrypt is free, so there’s no need to arrange payment.

How you use Certbot depends on the configuration of your web server. The best way to get started is to use our interactive guide. It generates instructions based on your configuration settings. In most cases, you’ll need root or administrator access to your web server to run Certbot.

Certbot is meant to be run directly on your web server, not on your personal computer. If you’re using a hosted service and don’t have direct access to your web server, you might not be able to use Certbot. Check with your hosting provider for documentation about uploading certificates or using certificates issued by Let’s Encrypt.

Certbot is a fully-featured, extensible client for the Let’s Encrypt CA (or any other CA that speaks the ACME protocol) that can automate the tasks of obtaining certificates and configuring webservers to use them. This client runs on Unix-based operating systems.

To see the changes made to Certbot between versions please refer to our changelog.

Until May 2016, Certbot was named simply letsencrypt or letsencrypt-auto, depending on install method. Instructions on the Internet, and some pieces of the software, may still refer to this older name.

1.1 Contributing

If you’d like to contribute to this project please read Developer Guide.

This project is governed by EFF’s Public Projects Code of Conduct.

1.2 How to run the client

The easiest way to install and run Certbot is by visiting certbot.eff.org, where you can find the correct instructions for many web server and OS combinations. For more information, see Get Certbot.
1.3 Understanding the client in more depth

To understand what the client is doing in detail, it’s important to understand the way it uses plugins. Please see the explanation of plugins in the User Guide.

1.3.1 Links

Documentation: https://certbot.eff.org/docs
Software project: https://github.com/certbot/certbot
Notes for developers: https://certbot.eff.org/docs/contributing.html
Main Website: https://certbot.eff.org
Let’s Encrypt Website: https://letsencrypt.org
Community: https://community.letsencrypt.org
ACME spec: http://ietf-wg-acme.github.io/acme/
ACME working area in github: https://github.com/ietf-wg-acme/acme

1.3.2 System Requirements

See https://certbot.eff.org/docs/install.html#system-requirements.
A public key or digital *certificate* (formerly called an SSL certificate) uses a public key and a private key to enable secure communication between a client program (web browser, email client, etc.) and a server over an encrypted SSL (secure socket layer) or TLS (transport layer security) connection. The certificate is used both to encrypt the initial stage of communication (secure key exchange) and to identify the server. The certificate includes information about the key, information about the server identity, and the digital signature of the certificate issuer. If the issuer is trusted by the software that initiates the communication, and the signature is valid, then the key can be used to communicate securely with the server identified by the certificate. Using a certificate is a good way to prevent “man-in-the-middle” attacks, in which someone in between you and the server you think you are talking to is able to insert their own (harmful) content.

You can use Certbot to easily obtain and configure a free certificate from Let’s Encrypt, a joint project of EFF, Mozilla, and many other sponsors.

2.1 Certificates and Lineages

Certbot introduces the concept of a *lineage*, which is a collection of all the versions of a certificate plus Certbot configuration information maintained for that certificate from renewal to renewal. Whenever you renew a certificate, Certbot keeps the same configuration unless you explicitly change it, for example by adding or removing domains. If you add domains, you can either add them to an existing lineage or create a new one.

See also: *Re-creating and Updating Existing Certificates*
3.1 About Certbot

Certbot is meant to be run directly on a web server, normally by a system administrator. In most cases, running Certbot on your personal computer is not a useful option. The instructions below relate to installing and running Certbot on a server.

System administrators can use Certbot directly to request certificates; they should not allow unprivileged users to run arbitrary Certbot commands as root, because Certbot allows its user to specify arbitrary file locations and run arbitrary scripts.

Certbot is packaged for many common operating systems and web servers. Check whether certbot (or letsencrypt) is packaged for your web server’s OS by visiting certbot.eff.org, where you will also find the correct installation instructions for your system.

Note: Unless you have very specific requirements, we kindly suggest that you use the Certbot packages provided by your package manager (see certbot.eff.org). If such packages are not available, we recommend using certbot-auto, which automates the process of installing Certbot on your system.
3.2 System Requirements

Certbot currently requires Python 2.7 or 3.5+ running on a UNIX-like operating system. By default, it requires root access in order to write to /etc/letsencrypt, /var/log/letsencrypt, /var/lib/letsencrypt; to bind to port 80 (if you use the standalone plugin) and to read and modify webserver configurations (if you use the apache or nginx plugins). If none of these apply to you, it is theoretically possible to run without root privileges, but for most users who want to avoid running an ACME client as root, either letsencrypt-nosudo or simp_le are more appropriate choices.

The Apache plugin currently requires an OS with augeas version 1.0; currently it supports modern OSes based on Debian, Ubuntu, Fedora, SUSE, Gentoo and Darwin.

Additional integrity verification of certbot-auto script can be done by verifying its digital signature. This requires a local installation of gpg2, which comes packaged in many Linux distributions under name gnupg or gnupg2.

Installing with certbot-auto requires 512MB of RAM in order to build some of the dependencies. Installing from pre-built OS packages avoids this requirement. You can also temporarily set a swap file. See “Problems with Python virtual environment” below for details.

3.3 Alternate installation methods

If you are offline or your operating system doesn’t provide a package, you can use an alternate method for installing certbot.

3.3.1 Snap

Most modern Linux distributions (basically any that use systemd) can install Certbot packaged as a snap. Support for the Certbot snap is currently in its beta phase and limited to the x86_64 architecture, but it provides an easy way to ensure you have the latest version of Certbot with features like automated certificate renewal preconfigured.

You can find instructions for installing the Certbot snap at https://certbot.eff.org/instructions by selecting your server software and then choosing “snapd” in the “System” dropdown menu. (You should select “snapd” regardless of your operating system, as our instructions are the same across all systems.)

3.3.2 Certbot-Auto

The certbot-auto wrapper script installs Certbot, obtaining some dependencies from your web server OS and putting others in a python virtual environment. You can download and run it as follows:

```bash
wget https://dl.eff.org/certbot-auto
sudo mv certbot-auto /usr/local/bin/certbot-auto
sudo chown root /usr/local/bin/certbot-auto
sudo chmod 0755 /usr/local/bin/certbot-auto
/usr/local/bin/certbot-auto --help
```

To remove certbot-auto, just delete it and the files it places under /opt/eff.org, along with any cronjob or systemd timer you may have created.

To check the integrity of the certbot-auto script, you can use these steps:
user@webserver:~$ wget -N https://dl.eff.org/certbot-auto.asc
user@webserver:~$ gpg2 --keyserver pool.sks-keyservers.net --recv-key
 --A2CFB51FA275A7286234E7B24D17C995CD9775F2
user@webserver:~$ gpg2 --trusted-key 4D17C995CD9775F2 --verify certbot-auto.asc /usr/
 --local/bin/certbot-auto

The output of the last command should look something like:

gpg: Signature made Wed 02 May 2018 05:29:12 AM IST
 gpg: using RSA key A2CFB51FA275A7286234E7B24D17C995CD9775F2
 gpg: key 4D17C995CD9775F2 marked as ultimately trusted
 gpg: checking the trustdb
 gpg: marginals needed: 3 completes needed: 1 trust model: pgp
 gpg: depth: 0 valid: 2 signed: 2 trust: 0-, 0q, 0n, 0m, 0f, 2u
 gpg: depth: 1 valid: 2 signed: 0 trust: 2-, 0q, 0n, 0m, 0f, 0u
 gpg: next trustdb check due at 2027-11-22
 gpg: Good signature from "Let's Encrypt Client Team <letsencrypt-client@eff.org>"

The certbot-auto command updates to the latest client release automatically. Since certbot-auto is a wrapper to certbot, it accepts exactly the same command line flags and arguments. For more information, see Certbot command-line options.

For full command line help, you can type:

/usr/local/bin/certbot-auto --help all

3.3.3 Problems with Python virtual environment

On a low memory system such as VPS with less than 512MB of RAM, the required dependencies of Certbot will fail to build. This can be identified if the pip outputs contains something like internal compiler error: Killed (program cc1). You can workarround this restriction by creating a temporary swapfile:

user@webserver:~$ sudo fallocate -l 1G /tmp/swapfile
user@webserver:~$ sudo chmod 600 /tmp/swapfile
user@webserver:~$ sudo mkswap /tmp/swapfile
user@webserver:~$ sudo swapon /tmp/swapfile

Disable and remove the swapfile once the virtual environment is constructed:

user@webserver:~$ sudo swapoff /tmp/swapfile
user@webserver:~$ sudo rm /tmp/swapfile

3.3.4 Running with Docker

Docker is an amazingly simple and quick way to obtain a certificate. However, this mode of operation is unable to install certificates or configure your webserver, because our installer plugins cannot reach your webserver from inside the Docker container.

Most users should use the operating system packages (see instructions at certbot.eff.org) or, as a fallback, certbot-auto. You should only use Docker if you are sure you know what you are doing and have a good reason to do so.

You should definitely read the Where are my certificates? section, in order to know how to manage the certs manually. Our ciphersuites page provides some information about recommended ciphersuites. If none of these make much sense

3.3. Alternate installation methods
to you, you should definitely use the `certbot-auto` method, which enables you to use installer plugins that cover both of those hard topics.

If you’re still not convinced and have decided to use this method, from the server that the domain you’re requesting a certificate for resolves to, install Docker, then issue a command like the one found below. If you are using Certbot with the **Standalone** plugin, you will need to make the port it uses accessible from outside of the container by including something like `-p 80:80` or `-p 443:443` on the command line before `certbot/certbot`.

```bash
sudo docker run -it --rm --name certbot \
  -v "/etc/letsencrypt:/etc/letsencrypt" \
  -v "/var/lib/letsencrypt:/var/lib/letsencrypt" \
  certbot/certbot certonly
```

Running Certbot with the `certonly` command will obtain a certificate and place it in the directory `/etc/letsencrypt/live` on your system. Because Certonly cannot install the certificate from within Docker, you must install the certificate manually according to the procedure recommended by the provider of your webserver.

There are also Docker images for each of Certbot’s DNS plugins available at https://hub.docker.com/u/certbot which automate doing domain validation over DNS for popular providers. To use one, just replace `certbot/certbot` in the command above with the name of the image you want to use. For example, to use Certbot’s plugin for Amazon Route 53, you’d use `certbot/dns-route53`. You may also need to add flags to Certbot and/or mount additional directories to provide access to your DNS API credentials as specified in the DNS plugin documentation. If you would like to obtain a wildcard certificate from Let’s Encrypt’s ACMEv2 server, you’ll need to include `--server https://acme-v02.api.letsencrypt.org/directory` on the command line as well.

For more information about the layout of the `/etc/letsencrypt` directory, see **Where are my certificates?**.

3.3.5 Operating System Packages

Arch Linux

```bash
sudo pacman -S certbot
```

Debian

If you run Debian Buster or Debian testing/Sid, you can easily install certbot packages through commands like:

```bash
sudo apt-get update
sudo apt-get install certbot
```

If you run Debian Stretch, we recommend you use the packages in Debian backports repository. First you’ll have to follow the instructions at https://backports.debian.org/Instructions/ to enable the Stretch backports repo, if you have not already done so. Then run:

```bash
sudo apt-get install certbot -t stretch-backports
```

In all of these cases, there also packages available to help Certbot integrate with Apache, nginx, or various DNS services. If you are using Apache or nginx, we strongly recommend that you install the `python-certbot-apache` or `python-certbot-nginx` package so that Certbot can fully automate HTTPS configuration for your server. A full list of these packages can be found through a command like:

```bash
apt search 'python-certbot*'
```

They can be installed by running the same installation command above but replacing `certbot` with the name of the desired package.

There are no Certbot packages available for Debian Jessie and Jessie users should instead use `certbot-auto`.
Ubuntu

If you run Ubuntu Trusty, Xenial, or Bionic, certbot is available through the official PPA, that can be installed as followed:

```bash
sudo apt-get update
sudo apt-get install software-properties-common
sudo add-apt-repository universe
sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
```

Then, certbot can be installed using:

```bash
sudo apt-get install certbot
```

Optionally to install the Certbot Apache plugin, you can use:

```bash
sudo apt-get install python-certbot-apache
```

Fedora

```bash
sudo dnf install certbot python2-certbot-apache
```

FreeBSD

- **Port:** cd /usr/ports/security/py-certbot && make install clean
- **Package:** pkg install py27-certbot

Gentoo

The official Certbot client is available in Gentoo Portage. If you want to use the Apache plugin, it has to be installed separately:

```bash
emerge -av app-crypt/certbot
emerge -av app-crypt/certbot-apache
```

When using the Apache plugin, you will run into a “cannot find an SSLCertificateFile directive” or “cannot find an SSLCertificateKeyFile directive for certificate” error if you’re sporting the default Gentoo `httpd.conf`. You can fix this by commenting out two lines in `/etc/apache2/httpd.conf` as follows:

Change

```bash
<IfDefine SSL>
LoadModule ssl_module modules/mod_ssl.so
</IfDefine>
```

to

```bash
#<IfDefine SSL>
LoadModule ssl_module modules/mod_ssl.so
#</IfDefine>
```

For the time being, this is the only way for the Apache plugin to recognise the appropriate directives when installing the certificate. Note: this change is not required for the other plugins.

NetBSD

- **Build from source:** cd /usr/pkgsrc/security/py-certbot && make install clean
- **Install pre-compiled package:** pkg_add py27-certbot

3.3. Alternate installation methods
OpenBSD

- **Port:** `cd /usr/ports/security/letsencrypt/client && make install clean`
- **Package:** `pkg_add letsencrypt`

Other Operating Systems

OS packaging is an ongoing effort. If you’d like to package Certbot for your distribution of choice please have a look at the [Packaging Guide](#).

3.3.6 Installing from source

Installation from source is only supported for developers and the whole process is described in the [Developer Guide](#).

Warning: Please do not use `python certbot/setup.py install`, `python pip install certbot`, or `easy_install certbot`. Please do not attempt the installation commands as superuser/root and/or without virtual environment, e.g. `sudo python certbot/setup.py install`, `sudo pip install`, `sudo ./venv/bin/...`. These modes of operation might corrupt your operating system and are **not supported** by the Certbot team!
Table of Contents

- Certbot Commands
- Getting certificates (and choosing plugins)
 - Apache
 - Webroot
 - Nginx
 - Standalone
 - DNS Plugins
 - Manual
 - Combining plugins
 - Third-party plugins
- Managing certificates
 - Re-creating and Updating Existing Certificates
- Changing a Certificate’s Domains
 - Revoking certificates
 - Renewing certificates
 - Modifying the Renewal Configuration File
 - Automated Renewals
- Where are my certificates?
- Pre and Post Validation Hooks
- Changing the ACME Server
- Lock Files
- Configuration file
- Log Rotation
- Certbot command-line options
- Getting help
4.1 Certbot Commands

Certbot uses a number of different commands (also referred to as “subcommands”) to request specific actions such as obtaining, renewing, or revoking certificates. The most important and commonly-used commands will be discussed throughout this document; an exhaustive list also appears near the end of the document.

The certbot script on your web server might be named letsencrypt if your system uses an older package, or certbot-auto if you used an alternate installation method. Throughout the docs, whenever you see certbot, swap in the correct name as needed.

4.2 Getting certificates (and choosing plugins)

The Certbot client supports two types of plugins for obtaining and installing certificates: authenticators and installers.

Authenticators are plugins used with the certonly command to obtain a certificate. The authenticator validates that you control the domain(s) you are requesting a certificate for, obtains a certificate for the specified domain(s), and places the certificate in the /etc/letsencrypt directory on your machine. The authenticator does not install the certificate (it does not edit any of your server’s configuration files to serve the obtained certificate). If you specify multiple domains to authenticate, they will all be listed in a single certificate. To obtain multiple separate certificates you will need to run Certbot multiple times.

Installers are Plugins used with the install command to install a certificate. These plugins can modify your web-server’s configuration to serve your website over HTTPS using certificates obtained by certbot.

Plugins that do both can be used with the certbot run command, which is the default when no command is specified. The run subcommand can also be used to specify a combination of distinct authenticator and installer plugins.
<table>
<thead>
<tr>
<th>Plugin</th>
<th>Auth</th>
<th>Inst</th>
<th>Notes</th>
<th>Challenge types (and port)</th>
</tr>
</thead>
<tbody>
<tr>
<td>apache</td>
<td>Y</td>
<td>Y</td>
<td>Automates obtaining and installing a certificate with Apache.</td>
<td>http-01 (80)</td>
</tr>
<tr>
<td>nginx</td>
<td>Y</td>
<td>Y</td>
<td>Automates obtaining and installing a certificate with Nginx.</td>
<td>http-01 (80)</td>
</tr>
<tr>
<td>webroot</td>
<td>Y</td>
<td>N</td>
<td>Obtains a certificate by writing to the webroot directory of an already running webserver.</td>
<td>http-01 (80)</td>
</tr>
<tr>
<td>standalone</td>
<td>Y</td>
<td>N</td>
<td>Uses a “standalone” webserver to obtain a certificate. Requires port 80 to be available. This is useful on systems with no webserver, or when direct integration with the local webserver is not supported or not desired.</td>
<td>http-01 (80)</td>
</tr>
<tr>
<td>DNS plugins</td>
<td>Y</td>
<td>N</td>
<td>This category of plugins automates obtaining a certificate by modifying DNS records to prove you have control over a domain. Doing domain validation in this way is the only way to obtain wildcard certificates from Let’s Encrypt.</td>
<td>dns-01 (53)</td>
</tr>
</tbody>
</table>

4.2. Getting certificates (and choosing plugins)
Under the hood, plugins use one of several ACME protocol challenges to prove you control a domain. The options are
http-01 (which uses port 80) and dns-01 (requiring configuration of a DNS server on port 53, though that’s often not
the same machine as your webserver). A few plugins support more than one challenge type, in which case you can
choose one with --preferred-challenges.

There are also many third-party-plugins available. Below we describe in more detail the circumstances in which each
plugin can be used, and how to use it.

4.2.1 Apache

The Apache plugin currently supports modern OSes based on Debian, Fedora, SUSE, Gentoo and Darwin. This
automates both obtaining and installing certificates on an Apache webserver. To specify this plugin on the command
line, simply include --apache.

4.2.2 Webroot

If you’re running a local webserver for which you have the ability to modify the content being served, and you’d
prefer not to stop the webserver during the certificate issuance process, you can use the webroot plugin to obtain
a certificate by including certonly and --webroot on the command line. In addition, you’ll need to specify
--webroot-path or -w with the top-level directory (“web root”) containing the files served by your webserver.
For example, --webroot-path /var/www/html or --webroot-path /usr/share/nginx/html are two common webroot paths.

If you’re getting a certificate for many domains at once, the plugin needs to know where each domain’s files are served
from, which could potentially be a separate directory for each domain. When requesting a certificate for multiple
domains, each domain will use the most recently specified --webroot-path. So, for instance,

```
certbot certonly --webroot -w /var/www/example -d www.example.com -d example.com -w /
/var/www/other -d other.example.net -w another.other.example.net
```

would obtain a single certificate for all of those names, using the /var/www/example webroot directory for the
first two, and /var/www/other for the second two.

The webroot plugin works by creating a temporary file for each of your requested domains in ${webroot-path}/
.well-known/acme-challenge. Then the Let’s Encrypt validation server makes HTTP requests to validate
that the DNS for each requested domain resolves to the server running certbot. An example request made to your web
server would look like:

```
HGr8U1IeTW4kY_26Uiyaakz0kyQgFr_7Ar1LgtZ8S8X HTTP/1.1" 200 87 "=" "Mozilla/5.0
(compatible; Let’s Encrypt validation server; +https://www.letsencrypt.org)"
```

Note that to use the webroot plugin, your server must be configured to serve files from hidden directories. If /
.well-known is treated specially by your webserver configuration, you might need to modify the configuration to
ensure that files inside /.well-known/acme-challenge are served by the webserver.

4.2.3 Nginx

The Nginx plugin should work for most configurations. We recommend backing up Nginx configurations before using
it (though you can also revert changes to configurations with certbot --nginx rollback). You can use it by
providing the --nginx flag on the commandline.

```
certbot --nginx
```
4.2.4 Standalone

Use standalone mode to obtain a certificate if you don’t want to use (or don’t currently have) existing server software. The standalone plugin does not rely on any other server software running on the machine where you obtain the certificate.

To obtain a certificate using a “standalone” webserver, you can use the standalone plugin by including `certonly` and `--standalone` on the command line. This plugin needs to bind to port 80 in order to perform domain validation, so you may need to stop your existing webserver.

It must still be possible for your machine to accept inbound connections from the Internet on the specified port using each requested domain name.

By default, Certbot first attempts to bind to the port for all interfaces using IPv6 and then bind to that port using IPv4; Certbot continues so long as at least one bind succeeds. On most Linux systems, IPv4 traffic will be routed to the bound IPv6 port and the failure during the second bind is expected.

Use `--<challenge-type>-address` to explicitly tell Certbot which interface (and protocol) to bind.

4.2.5 DNS Plugins

If you’d like to obtain a wildcard certificate from Let’s Encrypt or run `certbot` on a machine other than your target webserver, you can use one of Certbot’s DNS plugins.

These plugins are not included in a default Certbot installation and must be installed separately. While the DNS plugins cannot currently be used with `certbot-auto`, they are available in many OS package managers and as Docker images. Visit https://certbot.eff.org to learn the best way to use the DNS plugins on your system.

Once installed, you can find documentation on how to use each plugin at:

- `certbot-dns-cloudflare`
- `certbot-dns-cloudxns`
- `certbot-dns-digitalocean`
- `certbot-dns-dnsimple`
- `certbot-dns-dnsmadeeasy`
- `certbot-dns-google`
- `certbot-dns-linode`
- `certbot-dns-luadns`
- `certbot-dns-nsone`
- `certbot-dns-ovh`
- `certbot-dns-rfc2136`
- `certbot-dns-route53`

4.2.6 Manual

If you’d like to obtain a certificate running `certbot` on a machine other than your target webserver or perform the steps for domain validation yourself, you can use the manual plugin. While hidden from the UI, you can use the plugin to obtain a certificate by specifying `certonly` and `--manual` on the command line. This requires you to copy and paste commands into another terminal session, which may be on a different computer.
The manual plugin can use either the http or the dns challenge. You can use the `--preferred-challenges` option to choose the challenge of your preference.

The http challenge will ask you to place a file with a specific name and specific content in the `.well-known/acme-challenge/` directory directly in the top-level directory (“web root”) containing the files served by your webserver. In essence it’s the same as the webroot plugin, but not automated.

When using the dns challenge, certbot will ask you to place a TXT DNS record with specific contents under the domain name consisting of the hostname for which you want a certificate issued, prepended by `_acme-challenge`. For example, for the domain `example.com`, a zone file entry would look like:

```
_acme-challenge.example.com. 300 IN TXT "gfj9Xq...Rg85nM"
```

Additionally you can specify scripts to prepare for validation and perform the authentication procedure and/or clean up after it by using the `--manual-auth-hook` and `--manual-cleanup-hook` flags. This is described in more depth in the hooks section.

4.2.7 Combining plugins

Sometimes you may want to specify a combination of distinct authenticator and installer plugins. To do so, specify the authenticator plugin with `--authenticator` or `-a` and the installer plugin with `--installer` or `-i`. For instance, you could create a certificate using the webroot plugin for authentication and the apache plugin for installation.

```
certbot run -a webroot -i apache -w /var/www/html -d example.com
```

Or you could create a certificate using the manual plugin for authentication and the nginx plugin for installation. (Note that this certificate cannot be renewed automatically.)

```
certbot run -a manual -i nginx -d example.com
```

4.2.8 Third-party plugins

There are also a number of third-party plugins for the client, provided by other developers. Many are beta/experimental, but some are already in widespread use:

<table>
<thead>
<tr>
<th>Plugin</th>
<th>Auth</th>
<th>Inst</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>haproxy</td>
<td>Y</td>
<td>Y</td>
<td>Integration with the HAProxy load balancer</td>
</tr>
<tr>
<td>s3front</td>
<td>Y</td>
<td>Y</td>
<td>Integration with Amazon CloudFront distribution of S3 buckets</td>
</tr>
<tr>
<td>gandi</td>
<td>Y</td>
<td>N</td>
<td>Obtain certificates via the Gandi LiveDNS API</td>
</tr>
<tr>
<td>varnish</td>
<td>Y</td>
<td>N</td>
<td>Obtain certificates via a Varnish server</td>
</tr>
<tr>
<td>external-auth</td>
<td>Y</td>
<td>Y</td>
<td>A plugin for convenient scripting</td>
</tr>
<tr>
<td>pritunl</td>
<td>N</td>
<td>Y</td>
<td>Install certificates in pritunl distributed OpenVPN servers</td>
</tr>
<tr>
<td>proxmox</td>
<td>N</td>
<td>Y</td>
<td>Install certificates in Proxmox Virtualization servers</td>
</tr>
<tr>
<td>dns-standalone</td>
<td>N</td>
<td>Y</td>
<td>Obtain certificates via an integrated DNS server</td>
</tr>
<tr>
<td>dns-ispcconfig</td>
<td>N</td>
<td>N</td>
<td>DNS Authentication using ISPCConfig as DNS server</td>
</tr>
<tr>
<td>dns-clouddns</td>
<td>Y</td>
<td>N</td>
<td>DNS Authentication using CloudDNS API</td>
</tr>
</tbody>
</table>

If you’re interested, you can also write your own plugin.
4.3 Managing certificates

To view a list of the certificates Certbot knows about, run the `certificates` subcommand:

```bash
certbot certificates
```

This returns information in the following format:

```
Found the following certs:
  Certificate Name: example.com
    Domains: example.com, www.example.com
    Expiry Date: 2017-02-19 19:53:00+00:00 (VALID: 30 days)
    Certificate Path: /etc/letsencrypt/live/example.com/fullchain.pem
    Private Key Path: /etc/letsencrypt/live/example.com/privkey.pem
```

`Certificate Name` shows the name of the certificate. Pass this name using the `--cert-name` flag to specify a particular certificate for the `run`, `certonly`, `certificates`, `renew`, and `delete` commands. Example:

```bash
certbot certonly --cert-name example.com
```

4.3.1 Re-creating and Updating Existing Certificates

You can use `certonly` or `run` subcommands to request the creation of a single new certificate even if you already have an existing certificate with some of the same domain names.

If a certificate is requested with `run` or `certonly` specifying a certificate name that already exists, Certbot updates the existing certificate. Otherwise a new certificate is created and assigned the specified name.

The `--force-renewal`, `--duplicate`, and `--expand` options control Certbot's behavior when re-creating a certificate with the same name as an existing certificate. If you don’t specify a requested behavior, Certbot may ask you what you intended.

`--force-renewal` tells Certbot to request a new certificate with the same domains as an existing certificate. Each domain must be explicitly specified via `-d`. If successful, this certificate is saved alongside the earlier one and symbolic links (the “live” reference) will be updated to point to the new certificate. This is a valid method of renewing a specific individual certificate.

`--duplicate` tells Certbot to create a separate, unrelated certificate with the same domains as an existing certificate. This certificate is saved completely separately from the prior one. Most users will not need to issue this command in normal circumstances.

`--expand` tells Certbot to update an existing certificate with a new certificate that contains all of the old domains and one or more additional new domains. With the `--expand` option, use the `-d` option to specify all existing domains and one or more new domains.

Example:

```bash
certbot --expand -d existing.com,example.com,newdomain.com
```

If you prefer, you can specify the domains individually like this:

```bash
certbot --expand -d existing.com -d example.com -d newdomain.com
```

Consider using `--cert-name` instead of `--expand`, as it gives more control over which certificate is modified and it lets you remove domains as well as adding them.
--allow-subset-of-names tells Certbot to continue with certificate generation if only some of the specified domain authorizations can be obtained. This may be useful if some domains specified in a certificate no longer point at this system.

Whenever you obtain a new certificate in any of these ways, the new certificate exists alongside any previously obtained certificates, whether or not the previous certificates have expired. The generation of a new certificate counts against several rate limits that are intended to prevent abuse of the ACME protocol, as described here.

4.4 Changing a Certificate’s Domains

The **--cert-name** flag can also be used to modify the domains a certificate contains, by specifying new domains using the **-d** or **--domains** flag. If certificate example.com previously contained example.com and www.example.com, it can be modified to only contain example.com by specifying only example.com with the **-d** or **--domains** flag. Example:

```
certbot certonly --cert-name example.com -d example.com
```

The same format can be used to expand the set of domains a certificate contains, or to replace that set entirely:

```
certbot certonly --cert-name example.com -d example.org,www.example.org
```

4.4.1 Revoking certificates

If your account key has been compromised or you otherwise need to revoke a certificate, use the **revoke** command to do so. Note that the **revoke** command takes the certificate path (ending in **cert.pem**), not a certificate name or domain. Example:

```
certbot revoke --cert-path /etc/letsencrypt/live/CERTNAME/cert.pem
```

You can also specify the reason for revoking your certificate by using the **reason** flag. Reasons include unspecified which is the default, as well as keycompromise, affiliationchanged, superseded, and cessationofoperation:

```
certbot revoke --cert-path /etc/letsencrypt/live/CERTNAME/cert.pem --reason keycompromise
```

Additionally, if a certificate is a test certificate obtained via the **--staging** or **--test-cert** flag, that flag must be passed to the **revoke** subcommand. Once a certificate is revoked (or for other certificate management tasks), all of a certificate’s relevant files can be removed from the system with the **delete** subcommand:

```
certbot delete --cert-name example.com
```

Note: If you don’t use **delete** to remove the certificate completely, it will be renewed automatically at the next renewal event.

Note: Revoking a certificate will have no effect on the rate limit imposed by the Let’s Encrypt server.
4.4.2 Renewing certificates

Note: Let’s Encrypt CA issues short-lived certificates (90 days). Make sure you renew the certificates at least once in 3 months.

See also:
Many of the certbot clients obtained through a distribution come with automatic renewal out of the box, such as Debian and Ubuntu versions installed through `apt`, CentOS/RHEL 7 through EPEL, etc. See Automated Renewals for more details.

As of version 0.10.0, Certbot supports a `renew` action to check all installed certificates for impending expiry and attempt to renew them. The simplest form is simply `certbot renew`.

This command attempts to renew any previously-obtained certificates that expire in less than 30 days. The same plugin and options that were used at the time the certificate was originally issued will be used for the renewal attempt, unless you specify other plugins or options. Unlike `certonly`, `renew` acts on multiple certificates and always takes into account whether each one is near expiry. Because of this, `renew` is suitable (and designed) for automated use, to allow your system to automatically renew each certificate when appropriate. Since `renew` only renews certificates that are near expiry it can be run as frequently as you want - since it will usually take no action.

The `renew` command includes hooks for running commands or scripts before or after a certificate is renewed. For example, if you have a single certificate obtained using the `standalone` plugin, you might need to stop the webserver before renewing so standalone can bind to the necessary ports, and then restart it after the plugin is finished. Example:

```
certbot renew --pre-hook "service nginx stop" --post-hook "service nginx start"
```

If a hook exits with a non-zero exit code, the error will be printed to `stderr` but renewal will be attempted anyway. A failing hook doesn’t directly cause Certbot to exit with a non-zero exit code, but since Certbot exits with a non-zero exit code when renewals fail, a failed hook causing renewal failures will indirectly result in a non-zero exit code. Hooks will only be run if a certificate is due for renewal, so you can run the above command frequently without unnecessarily stopping your webserver.

When Certbot detects that a certificate is due for renewal, `--pre-hook` and `--post-hook` hooks run before and after each attempt to renew it. If you want your hook to run only after a successful renewal, use `--deploy-hook` in a command like this.

```
certbot renew --deploy-hook /path/to/deploy-hook-script
```

You can also specify hooks by placing files in subdirectories of Certbot’s configuration directory. Assuming your configuration directory is `/etc/letsencrypt`, any executable files found in `/etc/letsencrypt/renewal-hooks/pre`, `/etc/letsencrypt/renewal-hooks/deploy`, and `/etc/letsencrypt/renewal-hooks/post` will be run as pre, deploy, and post hooks respectively when any certificate is renewed with the `renew` subcommand. These hooks are run in alphabetical order and are not run for other subcommands. (The order the hooks are run is determined by the byte value of the characters in their filenames and is not dependent on your locale.)

Hooks specified in the command line, `configuration file`, or `renewal configuration files` are run as usual after running all hooks in these directories. One minor exception to this is if a hook specified elsewhere is simply the path to an executable file in the hook directory of the same type (e.g. your `pre-hook` is the path to an executable in `/etc/letsencrypt/renewal-hooks/pre`), the file is not run a second time. You can stop Certbot from automatically running executables found in these directories by including `--no-directory-hooks` on the command line.

More information about hooks can be found by running `certbot --help renew`.

4.4. Changing a Certificate’s Domains
If you’re sure that this command executes successfully without human intervention, you can add the command to `crontab` (since certificates are only renewed when they’re determined to be near expiry, the command can run on a regular basis, like every week or every day). In that case, you are likely to want to use the `--quiet` flag to silence all output except errors.

If you are manually renewing all of your certificates, the `--force-renewal` flag may be helpful; it causes the expiration time of the certificate(s) to be ignored when considering renewal, and attempts to renew each and every installed certificate regardless of its age. (This form is not appropriate to run daily because each certificate will be renewed every day, which will quickly run into the certificate authority rate limit.)

Note that options provided to `certbot renew` will apply to every certificate for which renewal is attempted; for example, `certbot renew --rsa-key-size 4096` would try to replace every near-expiry certificate with an equivalent certificate using a 4096-bit RSA public key. If a certificate is successfully renewed using specified options, those options will be saved and used for future renewals of that certificate.

An alternative form that provides for more fine-grained control over the renewal process (while renewing specified certificates one at a time), is `certbot certonly` with the complete set of subject domains of a specific certificate specified via `-d` flags. You may also want to include the `--noninteractive` flag to prevent blocking on user input (which is useful when running the command from cron).

```
certbot certonly -n -d example.com -d www.example.com
```

All of the domains covered by the certificate must be specified in this case in order to renew and replace the old certificate rather than obtaining a new one; don’t forget any `www.` domains! Specifying a subset of the domains creates a new, separate certificate containing only those domains, rather than replacing the original certificate. When run with a set of domains corresponding to an existing certificate, the `certonly` command attempts to renew that specific certificate.

Please note that the CA will send notification emails to the address you provide if you do not renew certificates that are about to expire.

Certbot is working hard to improve the renewal process, and we apologize for any inconvenience you encounter in integrating these commands into your individual environment.

Note: `certbot renew` exit status will only be 1 if a renewal attempt failed. This means `certbot renew` exit status will be 0 if no certificate needs to be updated. If you write a custom script and expect to run a command only after a certificate was actually renewed you will need to use the `--deploy-hook` since the exit status will be 0 both on successful renewal and when renewal is not necessary.

4.4.3 Modifying the Renewal Configuration File

When a certificate is issued, by default Certbot creates a renewal configuration file that tracks the options that were selected when Certbot was run. This allows Certbot to use those same options again when it comes time for renewal. These renewal configuration files are located at `/etc/letsencrypt/renewal/CERTNAME`.

For advanced certificate management tasks, it is possible to manually modify the certificate’s renewal configuration file, but this is discouraged since it can easily break Certbot’s ability to renew your certificates. If you choose to modify the renewal configuration file we advise you to test its validity with the `certbot renew --dry-run` command.

Warning: Modifying any files in `/etc/letsencrypt` can damage them so Certbot can no longer properly manage its certificates, and we do not recommend doing so.

For most tasks, it is safest to limit yourself to pointing symlinks at the files there, or using `--deploy-hook` to copy / make new files based upon those files, if your operational situation requires it (for instance, combining certificates
and keys in different way, or having copies of things with different specific permissions that are demanded by other programs).

If the contents of /etc/letsencrypt/archive/CERTNAME are moved to a new folder, first specify the new folder’s name in the renewal configuration file, then run certbot update_symlinks to point the symlinks in /etc/letsencrypt/live/CERTNAME to the new folder.

If you would like the live certificate files whose symlink location Certbot updates on each run to reside in a different location, first move them to that location, then specify the full path of each of the four files in the renewal configuration file. Since the symlinks are relative links, you must follow this with an invocation of certbot update_symlinks.

For example, say that a certificate’s renewal configuration file previously contained the following directives:

archive_dir	/etc/letsencrypt/archive/example.com
cert	/etc/letsencrypt/live/example.com/cert.pem
privkey	/etc/letsencrypt/live/example.com/privkey.pem
chain	/etc/letsencrypt/live/example.com/chain.pem
fullchain	/etc/letsencrypt/live/example.com/fullchain.pem

The following commands could be used to specify where these files are located:

```bash
mv /etc/letsencrypt/archive/example.com /home/user/me/certbot/example_archive
sed -i 's,/etc/letsencrypt/archive/example.com,/home/user/me/certbot/example_archive, /etc/letsencrypt/renewal/example.com.conf
mv /etc/letsencrypt/live/example.com/*.pem /home/user/me/certbot
sed -i 's,/etc/letsencrypt/live/example.com,/home/user/me/certbot,g' /etc/letsencrypt/renewal/example.com.conf
certbot update_symlinks
```

4.4.4 Automated Renewals

Many Linux distributions provide automated renewal when you use the packages installed through their system package manager. The following table is an incomplete list of distributions which do so, as well as their methods for doing so.

If you are not sure whether or not your system has this already automated, refer to your distribution’s documentation, or check your system’s crontab (typically in /etc/crontab/ and /etc/cron.*/* and systemd timers (systemctl list-timers).

<table>
<thead>
<tr>
<th>Distribution Name</th>
<th>Distribution Version</th>
<th>Automation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CentOS</td>
<td>EPEL 7</td>
<td>systemd</td>
</tr>
<tr>
<td>Debian</td>
<td>jessie</td>
<td>cron, systemd</td>
</tr>
<tr>
<td>Debian</td>
<td>stretch</td>
<td>cron, systemd</td>
</tr>
<tr>
<td>Debian</td>
<td>testing/sid</td>
<td>cron, systemd</td>
</tr>
<tr>
<td>Fedora</td>
<td>26</td>
<td>systemd</td>
</tr>
<tr>
<td>Fedora</td>
<td>27</td>
<td>systemd</td>
</tr>
<tr>
<td>RHEL</td>
<td>EPEL 7</td>
<td>systemd</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>17.10</td>
<td>cron, systemd</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>certbot PPA</td>
<td>cron, systemd</td>
</tr>
</tbody>
</table>
4.5 Where are my certificates?

All generated keys and issued certificates can be found in `/etc/letsencrypt/live/$domain`. In the case of creating a SAN certificate with multiple alternative names, `$domain` is the first domain passed in via `-d` parameter. Rather than copying, please point your (web) server configuration directly to those files (or create symlinks). During the renewal, `/etc/letsencrypt/live` is updated with the latest necessary files.

For historical reasons, the containing directories are created with permissions of 0700 meaning that certificates are accessible only to servers that run as the root user. If you will never downgrade to an older version of Certbot, then you can safely fix this using `chmod 0755 /etc/letsencrypt/{live,archive}`.

For servers that drop root privileges before attempting to read the private key file, you will also need to use `chgrp` and `chmod 0640` to allow the server to read `/etc/letsencrypt/live/$domain/privkey.pem`.

Note: `/etc/letsencrypt/archive` and `/etc/letsencrypt/keys` contain all previous keys and certificates, while `/etc/letsencrypt/live` symlinks to the latest versions.

The following files are available:

privkey.pem Private key for the certificate.

```
Warning:  This must be kept secret at all times!  Never share it with anyone, including Certbot developers. You cannot put it into a safe, however - your server still needs to access this file in order for SSL/TLS to work.
```

Note: As of Certbot version 0.29.0, private keys for new certificate default to 0600. Any changes to the group mode or group owner (gid) of this file will be preserved on renewals.

This is what Apache needs for SSLCertificateKeyFile, and Nginx for ssl_certificate_key.

fullchain.pem All certificates, including server certificate (aka leaf certificate or end-entity certificate). The server certificate is the first one in this file, followed by any intermediates.

This is what Apache >= 2.4.8 needs for SSLCertificateFile, and what Nginx needs for ssl_certificate.

cert.pem and chain.pem (less common) cert.pem contains the server certificate by itself, and chain.pem contains the additional intermediate certificate or certificates that web browsers will need in order to validate the server certificate. If you provide one of these files to your web server, you must provide both of them, or some browsers will show “This Connection is Untrusted” errors for your site, some of the time.

Apache < 2.4.8 needs these for SSLCertificateFile, and SSLCertificateChainFile, respectively.

If you’re using OCSP stapling with Nginx >= 1.3.7, chain.pem should be provided as the ssl_trusted_certificate to validate OCSP responses.

Note: All files are PEM-encoded. If you need other format, such as DER or PFX, then you could convert using openssl. You can automate that with `--deploy-hook` if you’re using automatic renewal.
4.6 Pre and Post Validation Hooks

Certbot allows for the specification of pre and post validation hooks when run in manual mode. The flags to specify these scripts are `--manual-auth-hook` and `--manual-cleanup-hook` respectively and can be used as follows:

```
```

This will run the `authenticator.sh` script, attempt the validation, and then run the `cleanup.sh` script. Additionally certbot will pass relevant environment variables to these scripts:

- `CERTBOT_DOMAIN`: The domain being authenticated
- `CERTBOT_VALIDATION`: The validation string
- `CERTBOT_TOKEN`: Resource name part of the HTTP-01 challenge (HTTP-01 only)
- `CERTBOT_REMAINING_CHALLENGES`: Number of challenges remaining after the current challenge
- `CERTBOT_ALL_DOMAINS`: A comma-separated list of all domains challenged for the current certificate

Additionally for cleanup:

- `CERTBOT_AUTH_OUTPUT`: Whatever the auth script wrote to stdout

Example usage for HTTP-01:

```
```

```
#!/bin/bash

echo $CERTBOT_VALIDATION > /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN
```

```
#!/bin/bash

rmdir /var/www/htdocs/.well-known/acme-challenge/$CERTBOT_TOKEN
```

Example usage for DNS-01 (Cloudflare API v4) (for example purposes only, do not use as-is)

```
```

```
#!/bin/bash

# Get your API key from https://www.cloudflare.com/a/account/my-account
API_KEY="your-api-key"
EMAIL="your.email@example.com"

# Strip only the top domain to get the zone id
DOMAIN=$(expr match "$CERTBOT_DOMAIN" '.*\.(.*\.\*)?')

# Get the Cloudflare zone id
```

(continues on next page)
ZONE_EXTRA_PARAMS="status=active&page=1&per_page=20&order=status&direction=desc&match=all"
ZONE_ID=$(curl -s -X GET "https://api.cloudflare.com/client/v4/zones?name=$DOMAIN&$ZONE_EXTRA_PARAMS" \
-H "X-Auth-Email: $EMAIL" \
-H "X-Auth-Key: $API_KEY" \
-H "Content-Type: application/json" | python -c "import sys,json;print(json.load(sys.stdin)['result'][0]['id'])")

Create TXT record
CREATE_DOMAIN="_acme-challenge.$CERTBOT_DOMAIN"
RECORD_ID=$(curl -s -X POST "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records" \
-H "X-Auth-Email: $EMAIL" \
-H "X-Auth-Key: $API_KEY" \
-H "Content-Type: application/json" \
--data '{"type":"TXT","name":"'$CREATE_DOMAIN'","content":"'$CERTBOT_VALIDATION'","ttl":120}' \
| python -c "import sys,json;print(json.load(sys.stdin)['result']['id'])")"

Save info for cleanup
if [! -d /tmp/CERTBOT_$CERTBOT_DOMAIN];then
 mkdir -m 0700 /tmp/CERTBOT_$CERTBOT_DOMAIN
fi
echo $ZONE_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID
echo $RECORD_ID > /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID

Sleep to make sure the change has time to propagate over to DNS
sleep 25

/path/to/dns/cleanup.sh

#!/bin/bash

Get your API key from https://www.cloudflare.com/a/account/my-account
API_KEY="your-api-key"
EMAIL="your.email@example.com"

if [! -f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID]; then
 ZONE_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID)
 rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/ZONE_ID
fi

if [! -f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID]; then
 RECORD_ID=$(cat /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID)
 rm -f /tmp/CERTBOT_$CERTBOT_DOMAIN/RECORD_ID
fi

Remove the challenge TXT record from the zone
if [-n "$ZONE_ID"]; then
 if [-n "$RECORD_ID"]; then
 curl -s -X DELETE "https://api.cloudflare.com/client/v4/zones/$ZONE_ID/dns_records/$RECORD_ID" \
 -H "X-Auth-Email: $EMAIL" \
 -H "X-Auth-Key: $API_KEY" \
 -H "Content-Type: application/json"
 fi
fi

(continues on next page)
4.7 Changing the ACME Server

By default, Certbot uses Let’s Encrypt’s production server at https://acme-v02.api.letsencrypt.org/. You can tell Certbot to use a different CA by providing --server on the command line or in a configuration file with the URL of the server’s ACME directory. For example, if you would like to use Let’s Encrypt’s staging server, you would add --server https://acme-staging-v02.api.letsencrypt.org/directory to the command line.

If you use --server to specify an ACME CA that implements the standardized version of the spec, you may be able to obtain a certificate for a wildcard domain. Some CAs (such as Let’s Encrypt) require that domain validation for wildcard domains must be done through modifications to DNS records which means that the dns-01 challenge type must be used. To see a list of Certbot plugins that support this challenge type and how to use them, see plugins.

4.8 Lock Files

When processing a validation Certbot writes a number of lock files on your system to prevent multiple instances from overwriting each other’s changes. This means that by default two instances of Certbot will not be able to run in parallel.

Since the directories used by Certbot are configurable, Certbot will write a lock file for all of the directories it uses. This include Certbot’s --work-dir, --logs-dir, and --config-dir. By default these are /var/lib/letsencrypt, /var/log/letsencrypt, and /etc/letsencrypt respectively. Additionally if you are using Certbot with Apache or nginx it will lock the configuration folder for that program, which are typically also in the /etc directory.

Note that these lock files will only prevent other instances of Certbot from using those directories, not other processes. If you’d like to run multiple instances of Certbot simultaneously you should specify different directories as the --work-dir, --logs-dir, and --config-dir for each instance of Certbot that you would like to run.

4.9 Configuration file

Certbot accepts a global configuration file that applies its options to all invocations of Certbot. Certificate specific configuration choices should be set in the .conf files that can be found in /etc/letsencrypt/renewal.

By default no cli.ini file is created (though it may exist already if you installed Certbot via a package manager, for instance). After creating one it is possible to specify the location of this configuration file with certbot --config cli.ini (or shorter -c cli.ini). An example configuration file is shown below:

```ini
# This is an example of the kind of things you can do in a configuration file.
# All flags used by the client can be configured here. Run Certbot with
# "--help" to learn more about the available options.
#
# Note that these options apply automatically to all use of Certbot for
# obtaining or renewing certificates, so options specific to a single
# certificate on a system with several certificates should not be placed
# here.

# Use a 4096 bit RSA key instead of 2048
rsa-key-size = 4096
```

(continues on next page)
Uncomment and update to register with the specified e-mail address
email = foo@example.com

Uncomment to use the standalone authenticator on port 443
authenticator = standalone

Uncomment to use the webroot authenticator. Replace webroot-path with the
path to the public_html / webroot folder being served by your web server.
authenticator = webroot
webroot-path = /usr/share/nginx/html

By default, the following locations are searched:

- /etc/letsencrypt/cli.ini
- $XDG_CONFIG_HOME/letsencrypt/cli.ini (or ~/.config/letsencrypt/cli.ini if $XDG_CONFIG_HOME is not set).

Since this configuration file applies to all invocations of certbot it is incorrect to list domains in it. Listing domains in cli.ini may prevent renewal from working. Additionally due to how arguments in cli.ini are parsed, options which wish to not be set should not be listed. Options set to false will instead be read as being set to true by older versions of Certbot, since they have been listed in the config file.

4.10 Log Rotation

By default certbot stores status logs in /var/log/letsencrypt. By default certbot will begin rotating logs once there are 1000 logs in the log directory. Meaning that once 1000 files are in /var/log/letsencrypt Certbot will delete the oldest one to make room for new logs. The number of subsequent logs can be changed by passing the desired number to the command line flag `--max-log-backups`.

Note: Some distributions, including Debian and Ubuntu, disable certbot’s internal log rotation in favor of a more traditional logrotate script. If you are using a distribution’s packages and want to alter the log rotation, check /etc/logrotate.d/ for a certbot rotation script.

4.11 Certbot command-line options

Certbot supports a lot of command line options. Here’s the full list, from `certbot --help all`:

```
usage:
certbot [SUBCOMMAND] [options] [-d DOMAIN] [-d DOMAIN] ...
```

Certbot can obtain and install HTTPS/TLS/SSL certificates. By default, it will attempt to use a webserver both for obtaining and installing the certificate. The most common SUBCOMMANDS and flags are:

obtain, install, and renew certificates:

- (default) run: Obtain & install a certificate in your current webserver
- certonly: Obtain or renew a certificate, but do not install it
- renew: Renew all previously obtained certificates that are near expiry
- enhance: Add security enhancements to your existing configuration
- -d DOMAINS: Comma-separated list of domains to obtain a certificate for
--apache Use the Apache plugin for authentication & installation
--standalone Run a standalone webservice for authentication
--nginx Use the Nginx plugin for authentication & installation
--webroot Place files in a server's webroot folder for authentication
--manual Obtain certificates interactively, or using shell script hooks
-n Run non-interactively
--test-cert Obtain a test certificate from a staging server
--dry-run Test "renew" or "certonly" without saving any certificates to disk

manage certificates:
certificates Display information about certificates you have from Certbot
revoke Revoke a certificate (supply --cert-name or --cert-path)
delete Delete a certificate (supply --cert-name)

manage your account:
register Create an ACME account
unregister Deactivate an ACME account
update_account Update an ACME account
--agree-tos Agree to the ACME server's Subscriber Agreement
-m EMAIL Email address for important account notifications

optional arguments:
-h, --help show this help message and exit
-c CONFIG_FILE, --config CONFIG_FILE path to config file (default: /etc/letsencrypt/cli.ini and ~/.config/letsencrypt/cli.ini)
-v, --verbose This flag can be used multiple times to incrementally increase the verbosity of output, e.g. -vvv. (default: -2)
--max-log-backups MAX_LOG_BACKUPS Specifies the maximum number of backup logs that should be kept by Certbot's built in log rotation. Setting this flag to 0 disables log rotation entirely, causing Certbot to always append to the same log file. (default: 1000)
-n, --non-interactive, --noninteractive Run without ever asking for user input. This may require additional command line flags; the client will try to explain which ones are required if it finds one missing (default: False)
--force-interactive Force Certbot to be interactive even if it detects it's not being run in a terminal. This flag cannot be used with the renew subcommand. (default: False)
-d DOMAIN, --domains DOMAIN, --domain DOMAIN Domain names to apply. For multiple domains you can use multiple -d flags or enter a comma separated list of domains as a parameter. The first domain provided will be the subject CN of the certificate, and all domains will be Subject Alternative Names on the certificate. The first domain will also be used in some software user interfaces and as the file paths for the certificate and related material unless otherwise specified or you already have a certificate with the same name. In the case of a name collision it will append a number like 0001 to the file path name.
--eab-kid EAB_KID Key Identifier for External Account Binding (default: None)
--eab-hmac-key EAB_HMAC_KEY HMAC key for External Account Binding (default: None)
--cert-name CERTNAME Certificate name to apply. This name is used by Certbot for housekeeping and in file paths; it doesn't affect the content of the certificate itself. To see certificate names, run 'certbot certificates'. When creating a new certificate, specifies the new certificate's name. (default: the first provided domain or the name of an existing certificate on your system for the same domains)
--dry-run Perform a test run of the client, obtaining test (invalid) certificates but not saving them to disk. This can currently only be used with the 'certonly' and 'renew' subcommands. Note: Although --dry-run tries to avoid making any persistent changes on a system, it is not completely side-effect free: if used with webserver authenticator plugins like apache and nginx, it makes and then reverts temporary config changes in order to obtain test certificates, and reloads webservers to deploy and then roll back those changes. It also calls --pre-hook and --post-hook commands if they are defined because they may be necessary to accurately simulate renewal. --deploy-hook commands are not called. (default: False)
--debug-challenges After setting up challenges, wait for user input before submitting to CA (default: False)
--preferred-challenges PREF_CHALLS A sorted, comma delimited list of the preferred challenge to use during authorization with the most preferred challenge listed first (Eg, "dns" or "http,dns"). Not all plugins support all challenges. See https://certbot.eff.org/docs/using.html#plugins for details. ACME Challenges are versioned, but if you pick "http" rather than "http-01", Certbot will select the latest version automatically. (default: [])
--user-agent USER_AGENT Set a custom user agent string for the client. User agent strings allow the CA to collect high level statistics about success rates by OS, plugin and use case, and to know when to deprecate support for past Python versions and flags. If you wish to hide this information from the Let's Encrypt server, set this to "". (default: CertbotACMEClient/1.3.0 (certbot(-auto); OS_NAME OS_VERSION) Authenticator/XXX Installer/YYY (SUBCOMMAND; flags: FLAGS) Py/major.minor.patchlevel). The flags encoded in the user agent are: --duplicate, --force-renew, --allow-subset-of-names, -n, and whether any hooks are set.
--user-agent-comment USER_AGENT_COMMENT Add a comment to the default user agent string. May be used when repackaging Certbot or calling it from another tool to allow additional statistical data to be collected. Ignored if --user-agent is set. (Example: Foo-Wrapper/1.0) (default: None)
automation:
Flags for automating execution & other tweaks

--keep-until-expiring, --keep, --reinstall
If the requested certificate matches an existing
certificate, always keep the existing one until it is
due for renewal (for the 'run' subcommand this means
reinstall the existing certificate). (default: Ask)

--expand
If an existing certificate is a strict subset of the
requested names, always expand and replace it with the
additional names. (default: Ask)

--version
show program's version number and exit

--force-renewal, --renew-by-default
If a certificate already exists for the requested
domains, renew it now, regardless of whether it is
near expiry. (Often --keep-until-expiring is more
appropriate). Also implies --expand. (default: False)

--renew-with-new-domains
If a certificate already exists for the requested
certificate name but does not match the requested
domains, renew it now, regardless of whether it is
near expiry. (default: False)

--reuse-key
When renewing, use the same private key as the
existing certificate. (default: False)

--allow-subset-of-names
When performing domain validation, do not consider it
a failure if authorizations can not be obtained for a
strict subset of the requested domains. This may be
useful for allowing renewals for multiple domains to
succeed even if some domains no longer point at this
system. This option cannot be used with --csr.
(default: False)

--agree-tos
Agree to the ACME Subscriber Agreement (default: Ask)

--duplicate
Allow making a certificate lineage that duplicates an
existing one (both can be renewed in parallel)
(default: False)

--os-packages-only
(certbot-auto only) install OS package dependencies
and then stop (default: False)

--no-self-upgrade
(certbot-auto only) prevent the certbot-auto script
from upgrading itself to newer released versions
(default: Upgrade automatically)

--no-bootstrap
(certbot-auto only) prevent the certbot-auto script
from installing OS-level dependencies (default: Prompt
to install OS-wide dependencies, but exit if the user
says 'No')

--no-permissions-check
(certbot-auto only) skip the check on the file system
permissions of the certbot-auto script (default: False)

-q, --quiet
Silence all output except errors. Useful for
automation via cron. Implies --non-interactive.
(default: False)

security:
Security parameters & server settings
```
--rsa-key-size N  Size of the RSA key. (default: 2048)
--must-staple  Adds the OCSP Must Staple extension to the
certificate. Autoconfigures OCSP Stapling for
supported setups (Apache version >= 2.3.3). (default:
False)
--redirect  Automatically redirect all HTTP traffic to HTTPS for
the newly authenticated vhost. (default: Ask)
--no-redirect  Do not automatically redirect all HTTP traffic to
HTTPS for the newly authenticated vhost. (default:
Ask)
--hsts  Add the Strict-Transport-Security header to every HTTP
response. Forcing browser to always use SSL for the
domain. Defends against SSL Stripping. (default: None)
--uir  Add the "Content-Security-Policy: upgrade-insecure-
requests" header to every HTTP response. Forcing the
browser to use https:// for every http:// resource.
(default: None)
--staple-ocsp  Enables OCSP Stapling. A valid OCSP response is
stapled to the certificate that the server offers
during TLS. (default: None)
--strict-permissions  Require that all configuration files are owned by the
current user; only needed if your config is somewhere
unsafe like /tmp/ (default: False)
--auto-hsts  Gradually increasing max-age value for HTTP Strict
Transport Security security header (default: False)
```

testing:

The following flags are meant for testing and integration purposes only.

```
--test-cert, --staging  Use the staging server to obtain or revoke test
(invalid) certificates; equivalent to --server https
://acme-staging-v02.api.letsencrypt.org/directory
(default: False)
--debug  Show tracebacks in case of errors, and allow certbot-
auto execution on experimental platforms (default: False)
--no-verify-ssl  Disable verification of the ACME server's certificate.
(default: False)
--http-01-port HTTP01_PORT  Port used in the http-01 challenge. This only affects
the port Certbot listens on. A conforming ACME server
will still attempt to connect on port 80. (default: 80)
--http-01-address HTTP01_ADDRESS  The address the server listens to during http-01
challenge. (default: )
--https-port HTTPS_PORT  Port used to serve HTTPS. This affects which port
Nginx will listen on after a LE certificate is
installed. (default: 443)
--break-my-certs  Be willing to replace or renew valid certificates with
invalid (testing/staging) certificates (default: False)
```

paths:

Flags for changing execution paths & servers

(continues on next page)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--cert-path CERT_PATH</td>
<td>Path to where certificate is saved (with auth --csr), installed from, or revoked. (default: None)</td>
</tr>
<tr>
<td>--key-path KEY_PATH</td>
<td>Path to private key for certificate installation or revocation (if account key is missing) (default: None)</td>
</tr>
<tr>
<td>--fullchain-path FULLCHAIN_PATH</td>
<td>Accompanying path to a full certificate chain (certificate plus chain). (default: None)</td>
</tr>
<tr>
<td>--chain-path CHAIN_PATH</td>
<td>Accompanying path to a certificate chain. (default: None)</td>
</tr>
<tr>
<td>--config-dir CONFIG_DIR</td>
<td>Configuration directory. (default: /etc/letsencrypt)</td>
</tr>
<tr>
<td>--work-dir WORK_DIR</td>
<td>Working directory. (default: /var/lib/letsencrypt)</td>
</tr>
<tr>
<td>--logs-dir LOGS_DIR</td>
<td>Logs directory. (default: /var/log/letsencrypt)</td>
</tr>
<tr>
<td>--server SERVER</td>
<td>ACME Directory Resource URI. (default: https://acme-v02.api.letsencrypt.org/directory)</td>
</tr>
</tbody>
</table>

Manage:
Various subcommands and flags are available for managing your certificates:

- **certificates** List certificates managed by Certbot
- **delete** Clean up all files related to a certificate
- **renew** Renew all certificates (or one specified with --cert-name)
- **revoke** Revoke a certificate specified with --cert-path or --cert-name
- **update_symlinks** Recreate symlinks in your /etc/letsencrypt/live/ directory

Run:
Options for obtaining & installing certificates

- **certonly:** Options for modifying how a certificate is obtained

 - **--csr CSR** Path to a Certificate Signing Request (CSR) in DER or PEM format. Currently --csr only works with the 'certonly' subcommand. (default: None)

- **renew:** The 'renew' subcommand will attempt to renew all certificates (or more precisely, certificate lineages) you have previously obtained if they are close to expiry, and print a summary of the results. By default, 'renew' will reuse the options used to create obtain or most recently successfully renew each certificate lineage. You can try it with '--dry-run' first. For more fine-grained control, you can renew individual lineages with the 'certonly' subcommand. Hooks are available to run commands before and after renewal; see https://certbot.eff.org/docs/using.html#renewal for more information on these.

 - **--pre-hook PRE_HOOK** Command to be run in a shell before obtaining any certificates. Intended primarily for renewal, where it can be used to temporarily shut down a webserver that might conflict with the standalone plugin. This will...
only be called if a certificate is actually to be obtained/renewed. When renewing several certificates that have identical pre-hooks, only the first will be executed. (default: None)

--post-hook POST_HOOK
Command to be run in a shell after attempting to obtain/renew certificates. Can be used to deploy renewed certificates, or to restart any servers that were stopped by --pre-hook. This is only run if an attempt was made to obtain/renew a certificate. If multiple renewed certificates have identical post-hooks, only one will be run. (default: None)

--deploy-hook DEPLOY_HOOK
Command to be run in a shell once for each successfully issued certificate. For this command, the shell variable $RENEWED_LINEAGE will point to the config live subdirectory (for example, "/etc/letsencrypt/live/example.com") containing the new certificates and keys; the shell variable $RENEWED_DOMAINS will contain a space-delimited list of renewed certificate domains (for example, "example.com www.example.com") (default: None)

--disable-hook-validation
Ordinarily the commands specified for --pre-hook/--post-hook/--deploy-hook will be checked for validity, to see if the programs being run are in the $PATH, so that mistakes can be caught early, even when the hooks aren't being run just yet. The validation is rather simplistic and fails if you use more advanced shell constructs, so you can use this switch to disable it. (default: False)

--no-directory-hooks
Disable running executables found in Certbot's hook directories during renewal. (default: False)

--disable-renew-updates
Disable automatic updates to your server configuration that would otherwise be done by the selected installer plugin, and triggered when the user executes "certbot renew", regardless of if the certificate is renewed. This setting does not apply to important TLS configuration updates. (default: False)

--no-autorenew
Disable auto renewal of certificates. (default: True)

certificates:
List certificates managed by Certbot

delete:
Options for deleting a certificate

revoke:
Options for revocation of certificates

--reason {unspecified,keycompromise,affiliationchanged,superseded,cessionofoperation}
Specify reason for revoking certificate. (default: unspecified)

--delete-after-revoke
Delete certificates after revoking them, along with...
all previous and later versions of those certificates. (default: None)

--no-delete-after-revoke
Do not delete certificates after revoking them. This option should be used with caution because the 'renew' subcommand will attempt to renew undeleted revoked certificates. (default: None)

register:
Options for account registration

--register-unsafely-without-email
Specifying this flag enables registering an account with no email address. This is strongly discouraged, because in the event of key loss or account compromise you will irrevocably lose access to your account. You will also be unable to receive notice about impending expiration or revocation of your certificates. Updates to the Subscriber Agreement will still affect you, and will be effective 14 days after posting an update to the web site. (default: False)

-m EMAIL, --email EMAIL
Email used for registration and recovery contact. Use comma to register multiple emails, ex: u1@example.com,u2@example.com. (default: Ask).

--eff-email
Share your e-mail address with EFF (default: None)

--no-eff-email
Don't share your e-mail address with EFF (default: None)

update_account:
Options for account modification

unregister:
Options for account deactivation.

--account ACCOUNT_ID
Account ID to use (default: None)

install:
Options for modifying how a certificate is deployed

rollback:
Options for rolling back server configuration changes

--checkpoints N
Revert configuration N number of checkpoints. (default: 1)

plugins:
Options for the "plugins" subcommand

--init
Initialize plugins. (default: False)

--prepare
Initialize and prepare plugins. (default: False)

--authenticators
Limit to authenticator plugins only. (default: None)

--installers
Limit to installer plugins only. (default: None)

update_symlinks:
Recreates certificate and key symlinks in /etc/letsencrypt/live, if you changed them by hand or edited a renewal configuration file
enhance:
Helps to harden the TLS configuration by adding security enhancements to
already existing configuration.

plugins:
Plugin Selection: Certbot client supports an extensible plugins
architecture. See 'certbot plugins' for a list of all installed plugins
and their names. You can force a particular plugin by setting options
provided below. Running --help <plugin_name> will list flags specific to
that plugin.

--configurator CONFIGURATOR
 Name of the plugin that is both an authenticator and
 an installer. Should not be used together with
 --authenticator or --installer. (default: Ask)
-a AUTHENTICATOR, --authenticator AUTHENTICATOR
 Authenticator plugin name. (default: None)
-i INSTALLER, --installer INSTALLER
 Installer plugin name (also used to find domains).
 (default: None)
--apache
 Obtain and install certificates using Apache (default: False)
--nginx
 Obtain and install certificates using Nginx (default: False)
--standalone
 Obtain certificates using a "standalone" webserver.
 (default: False)
--manual
 Provide laborious manual instructions for obtaining a
certificate (default: False)
--webroot
 Obtain certificates by placing files in a webroot
directory. (default: False)
--dns-cloudflare
 Obtain certificates using a DNS TXT record (if you are
 using Cloudflare for DNS). (default: False)
--dns-cloudxns
 Obtain certificates using a DNS TXT record (if you are
 using CloudXNS for DNS). (default: False)
--dns-digitalocean
 Obtain certificates using a DNS TXT record (if you are
 using DigitalOcean for DNS). (default: False)
--dns-dnsimple
 Obtain certificates using a DNS TXT record (if you are
 using DNSimple for DNS). (default: False)
--dns-dnsmadeeasy
 Obtain certificates using a DNS TXT record (if you are
 using DNS Made Easy for DNS). (default: False)
--dns-gehirn
 Obtain certificates using a DNS TXT record (if you are
 using Gehirn Infrastructure Service for DNS).
 (default: False)
--dns-google
 Obtain certificates using a DNS TXT record (if you are
 using Google Cloud DNS). (default: False)
--dns-linode
 Obtain certificates using a DNS TXT record (if you are
 using Linode for DNS). (default: False)
--dns-luadns
 Obtain certificates using a DNS TXT record (if you are
 using LuaDNS for DNS). (default: False)
--dns-nsone
 Obtain certificates using a DNS TXT record (if you are
 using NS1 for DNS). (default: False)
--dns-ovh
 Obtain certificates using a DNS TXT record (if you are
 using OVH for DNS). (default: False)
--dns-rfc2136
 Obtain certificates using a DNS TXT record (if you are
 using BIND for DNS). (default: False)
--dns-route53
 Obtain certificates using a DNS TXT record (if you are

using Route53 for DNS). (default: False)

--dns-sakuracloud Obtain certificates using a DNS TXT record (if you are using Sakura Cloud for DNS). (default: False)

apache:
Apache Web Server plugin (Please note that the default values of the Apache plugin options change depending on the operating system Certbot is run on.)

--apache-enmod APACHE_ENMOD
Path to the Apache 'a2enmod' binary (default: None)

--apache-dismod APACHE_DISMOD
Path to the Apache 'a2dismod' binary (default: None)

--apache-le-vhost-ext APACHE_LE_VHOST_EXT
SSL vhost configuration extension (default: -le-ssl.conf)

--apache-server-root APACHE_SERVER_ROOT
Apache server root directory (default: /etc/apache2)

--apache-vhost-root APACHE_VHOST_ROOT
Apache server VirtualHost configuration root (default: None)

--apache-logs-root APACHE_LOGS_ROOT
Apache server logs directory (default: /var/log/apache2)

--apache-challenge-location APACHE_CHALLENGE_LOCATION
Directory path for challenge configuration (default: /etc/apache2)

--apache-handle-modules APACHE_HANDLE_MODULES
Let installer handle enabling required modules for you (Only Ubuntu/Debian currently) (default: False)

--apache-handle-sites APACHE_HANDLE_SITES
Let installer handle enabling sites for you (Only Ubuntu/Debian currently) (default: False)

--apache-ctl APACHE_CTL
Full path to Apache control script (default: apache2ctl)

dns-cloudflare:
Obtain certificates using a DNS TXT record (if you are using Cloudflare for DNS).

--dns-cloudflare-propagation-seconds DNS_CLOUDFLARE_PROPAGATION_SECONDS
The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 10)

--dns-cloudflare-credentials DNS_CLOUDFLARE_CREDENTIALS
Cloudflare credentials INI file. (default: None)

dns-cloudxns:
Obtain certificates using a DNS TXT record (if you are using CloudXNS for DNS).

--dns-cloudxns-propagation-seconds DNS_CLOUDXNS_PROPAGATION_SECONDS
The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-cloudxns-credentials DNS_CLOUDXNS_CREDENTIALS

(continues on next page)
CloudXNS credentials INI file. (default: None)

dns-digitalocean:
Obtain certs using a DNS TXT record (if you are using DigitalOcean for DNS).

```
--dns-digitalocean-propagation-seconds DNS_DIGITALOCEAN_PROPAGATION_SECONDS
  The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 10)

--dns-digitalocean-credentials DNS_DIGITALOCEAN_CREDENTIALS
  DigitalOcean credentials INI file. (default: None)
```

dns-dnsimple:
Obtain certificates using a DNS TXT record (if you are using DNSimple for DNS).

```
--dns-dnsimple-propagation-seconds DNS_DNSIMPLE_PROPAGATION_SECONDS
  The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-dnsimple-credentials DNS_DNSIMPLE_CREDENTIALS
  DNSimple credentials INI file. (default: None)
```

dns-dnsmadeeasy:
Obtain certificates using a DNS TXT record (if you are using DNS Made Easy for DNS).

```
--dns-dnsmadeeasy-propagation-seconds DNS_DNSMADEEASY_PROPAGATION_SECONDS
  The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 60)

--dns-dnsmadeeasy-credentials DNS_DNSMADEEASY_CREDENTIALS
  DNS Made Easy credentials INI file. (default: None)
```

dns-gehirn:
Obtain certificates using a DNS TXT record (if you are using Gehirn Infrastructure Service for DNS).

```
--dns-gehirn-propagation-seconds DNS_GEHIRN_PROPAGATION_SECONDS
  The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-gehirn-credentials DNS_GEHIRN_CREDENTIALS
  Gehirn Infrastructure Service credentials file. (default: None)
```

dns-google:
Obtain certificates using a DNS TXT record (if you are using Google Cloud DNS for DNS).

```
--dns-google-propagation-seconds DNS_GOOGLE_PROPAGATION_SECONDS
  The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 60)

--dns-google-credentials DNS_GOOGLE_CREDENTIALS
  Path to Google Cloud DNS service account JSON file.
```
Certbot Documentation, Release 1.4.0.dev0

(continued from previous page)

(See https://developers.google.com/identity/protocols/OAuth2ServiceAccount#creatinganaccount for information about creating a service account and https://cloud.google.com/dns/access-control#permissions_and_roles for information about the required permissions.) (default: None)

dns-linode:
Obtain certs using a DNS TXT record (if you are using Linode for DNS).

--dns-linode-propagation-seconds DNS_LINODE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 1200)

--dns-linode-credentials DNS_LINODE_CREDENTIALS
 Linode credentials INI file. (default: None)

dns-luadns:
Obtain certificates using a DNS TXT record (if you are using LuaDNS for DNS).

--dns-luadns-propagation-seconds DNS_LUADNS_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-luadns-credentials DNS_LUADNS_CREDENTIALS
 LuaDNS credentials INI file. (default: None)

dns-nsone:
Obtain certificates using a DNS TXT record (if you are using NS1 for DNS).

--dns-nsone-propagation-seconds DNS_NSONE_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-nsone-credentials DNS_NSONE_CREDENTIALS
 NS1 credentials file. (default: None)

dns-ovh:
Obtain certificates using a DNS TXT record (if you are using OVH for DNS).

--dns-ovh-propagation-seconds DNS_OVH_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 30)

--dns-ovh-credentials DNS_OVH_CREDENTIALS
 OVH credentials INI file. (default: None)

dns-rfc2136:
Obtain certificates using a DNS TXT record (if you are using BIND for DNS).

--dns-rfc2136-propagation-seconds DNS_RFC2136_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 60)

--dns-rfc2136-credentials DNS_RFC2136_CREDENTIALS

(continues on next page)
RFC 2136 credentials INI file. (default: None)

dns-route53:
Obtain certificates using a DNS TXT record (if you are using AWS Route53 for DNS).

--dns-route53-propagation-seconds DNS_ROUTE53_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 10)

dns-sakuracloud:
Obtain certificates using a DNS TXT record (if you are using Sakura Cloud for DNS).

--dns-sakuracloud-propagation-seconds DNS_SAKURACLOUD_PROPAGATION_SECONDS
 The number of seconds to wait for DNS to propagate before asking the ACME server to verify the DNS record. (default: 90)

--dns-sakuracloud-credentials DNS_SAKURACLOUD_CREDENTIALS
 Sakura Cloud credentials file. (default: None)

manual:
Authenticate through manual configuration or custom shell scripts. When using shell scripts, an authenticator script must be provided. The environment variables available to this script depend on the type of challenge. $CERTBOT_DOMAIN will always contain the domain being authenticated. For HTTP-01 and DNS-01, $CERTBOT_VALIDATION is the validation string, and $CERTBOT_TOKEN is the filename of the resource requested when performing an HTTP-01 challenge. An additional cleanup script can also be provided and can use the additional variable $CERTBOT_AUTH_OUTPUT which contains the stdout output from the auth script.

--manual-auth-hook MANUAL_AUTH_HOOK
 Path or command to execute for the authentication script (default: None)

--manual-cleanup-hook MANUAL_CLEANUP_HOOK
 Path or command to execute for the cleanup script (default: None)

--manual-public-ip-logging-ok
 Automatically allows public IP logging (default: Ask)

nginx:
Nginx Web Server plugin

--nginx-server-root NGINX_SERVER_ROOT
 Nginx server root directory. (default: /etc/nginx or /usr/local/etc/nginx)

--nginx-ctl NGINX_CTL
 Path to the 'nginx' binary, used for 'configtest' and retrieving nginx version number. (default: nginx)

null:
Null Installer

standalone:
Spin up a temporary webserver

webroot:
Place files in webroot directory

--webroot-path WEBROOT_PATH, -w WEBROOT_PATH
 public_html / webroot path. This can be specified
 multiple times to handle different domains; each
 domain will have the webroot path that preceded it.
 For instance: `-w /var/www/example -d example.com -d
 www.example.com -w /var/www/thing -d thing.net -d
 m.thing.net` (default: Ask)

--webroot-map WEBROOT_MAP
 JSON dictionary mapping domains to webroot paths; this
 implies -d for each entry. You may need to escape this
 from your shell. E.g.: --webroot-map
 '"eg1.is,m.eg1.is"":"/www/eg1/", "eg2.is"":"/www/eg2"'
 This option is merged with, but takes precedence over,
 -w / -d entries. At present, if you put webroot-map in
 a config file, it needs to be on a single line, like:
 webroot-map = {"example.com":"/var/www"}. (default: {})

4.12 Getting help

If you’re having problems, we recommend posting on the Let’s Encrypt Community Forum.

If you find a bug in the software, please do report it in our issue tracker. Remember to give us as much information as possible:

- copy and paste exact command line used and the output (though mind that the latter might include some personally identifiable information, including your email and domains)
- copy and paste logs from /var/log/letsencrypt (though mind they also might contain personally identifiable information)
- copy and paste certbot --version output
- your operating system, including specific version
- specify which installation method you’ve chosen
Table of Contents

- Getting Started
 - Running a local copy of the client
 - Find issues to work on
 - Testing
 * Running automated unit tests
 * Running automated integration tests
 * Running manual integration tests
 * Running tests in CI
- Code components and layout
 - Plugin-architecture
 - Authenticators
 - Installer
 - Installer Development
 * Writing your own plugin
- Coding style
- Use certbot.compat.os instead of os
- Mypy type annotations
- Submitting a pull request
- Asking for help
- Updating certbot-auto and letsencrypt-auto
 - Updating the scripts
 - Building letsencrypt-auto-source/letsencrypt-auto
 - Opening a PR
- Updating the documentation
- Running the client with Docker
5.1 Getting Started

Certbot has the same system requirements when set up for development. While the section below will help you install Certbot and its dependencies, Certbot needs to be run on a UNIX-like OS so if you’re using Windows, you’ll need to set up a (virtual) machine running an OS such as Linux and continue with these instructions on that UNIX-like OS.

5.1.1 Running a local copy of the client

Running the client in developer mode from your local tree is a little different than running Certbot as a user. To get set up, clone our git repository by running:

```
$ git clone https://github.com/certbot/certbot
```

If you’re on macOS, we recommend you skip the rest of this section and instead run Certbot in Docker. You can find instructions for how to do this here. If you’re running on Linux, you can run the following commands to install dependencies and set up a virtual environment where you can run Certbot.

Install the OS system dependencies required to run Certbot.

```
# For APT-based distributions (e.g. Debian, Ubuntu ...)
sudo apt update
sudo apt install python3-dev python3-venv gcc libaugeas0 libssl-dev \libffi-dev ca-certificates openssl
# For RPM-based distributions (e.g. Fedora, CentOS ...)
# NB1: old distributions will use yum instead of dnf
# NB2: RHEL-based distributions use python3X-devel instead of python3-devel (e.g. python36-devel)
sudo dnf install python3-devel gcc augeas-libs openssl-devel libffi-devel \ redhat-rpm-config ca-certificates openssl
```

Set up the Python virtual environment that will host your Certbot local instance.

```
$ cd certbot
$ python tools/venv3.py
```

Note: You may need to repeat this when Certbot’s dependencies change or when a new plugin is introduced.

You can now run the copy of Certbot from git either by executing `venv3/bin/certbot`, or by activating the virtual environment. You can do the latter by running:

```
$ source venv3/bin/activate
```

After running this command, `certbot` and development tools like `ipdb`, `ipython`, `pytest`, and `tox` are available in the shell where you ran the command. These tools are installed in the virtual environment and are kept separate from your global Python installation. This works by setting environment variables so the right executables are found and Python can pull in the versions of various packages needed by Certbot. More information can be found in the `virtualenv` docs.
5.1.2 Find issues to work on

You can find the open issues in the github issue tracker. Comparatively easy ones are marked good first issue. If you’re starting work on something, post a comment to let others know and seek feedback on your plan where appropriate.

Once you’ve got a working branch, you can open a pull request. All changes in your pull request must have thorough unit test coverage, pass our tests, and be compliant with the coding style.

5.1.3 Testing

You can test your code in several ways:

- running the automated unit tests,
- running the automated integration tests
- running an ad hoc manual integration test

Running automated unit tests

When you are working in a file foo.py, there should also be a file foo_test.py either in the same directory as foo.py or in the tests subdirectory (if there isn’t, make one). While you are working on your code and tests, run python foo_test.py to run the relevant tests.

For debugging, we recommend putting import ipdb; ipdb.set_trace() statements inside the source code.

Once you are done with your code changes, and the tests in foo_test.py pass, run all of the unit tests for Certbot and check for coverage with tox -e py3-cover. You should then check for code style with tox -e lint (all files) or pylint --rcfile=.pylintrc path/to/file.py (single file at a time).

Once all of the above is successful, you may run the full test suite using tox --skip-missing-interpreters. We recommend running the commands above first, because running all tests like this is very slow, and the large amount of output can make it hard to find specific failures when they happen.

| Warning: | The full test suite may attempt to modify your system’s Apache config if your user has sudo permissions, so it should not be run on a production Apache server. |

Running automated integration tests

Generally it is sufficient to open a pull request and let Github and Travis run integration tests for you. However, you may want to run them locally before submitting your pull request. You need Docker and docker-compose installed and working.

The tox environment integration will setup Pebble, the Let’s Encrypt ACME CA server for integration testing, then launch the Certbot integration tests.

With a user allowed to access your local Docker daemon, run:

```bash
    tox -e integration
```

Tests will be run using pytest. A test report and a code coverage report will be displayed at the end of the integration tests execution.
Running manual integration tests

You can also manually execute Certbot against a local instance of the Pebble ACME server. This is useful to verify that the modifications done to the code makes Certbot behave as expected.

To do so you need:

- Docker installed, and a user with access to the Docker client,
- an available local copy of Certbot.

The virtual environment set up with python tools/venv.py contains two commands that can be used once the virtual environment is activated:

```bash
run_acme_server
```

- Starts a local instance of Pebble and runs in the foreground printing its logs.
- Press CTRL+C to stop this instance.
- This instance is configured to validate challenges against certbot executed locally.

```bash
certbot_test [ARGS...]
```

- Execute certbot with the provided arguments and other arguments useful for testing purposes, such as: verbose output, full tracebacks in case Certbot crashes, etc.
- Execution is preconfigured to interact with the Pebble CA started with run_acme_server.
- Any arguments can be passed as they would be to Certbot (eg. certbot_test certonly -d test.example.com).

Here is a typical workflow to verify that Certbot successfully issued a certificate using an HTTP-01 challenge on a machine with Python 3:

```bash
python tools/venv3.py
source venv3/bin/activate
run_acme_server &
certbot_test certonly --standalone -d test.example.com
# To stop Pebble, launch `fg` to get back the background job, then press CTRL+C
```

Running tests in CI

Certbot uses both Azure Pipelines and Travis to run continuous integration tests. If you are using our Azure and Travis setup, a branch whose name starts with test- will run all Azure and Travis tests on that branch. If the branch name starts with azure-test-, it will run all of our Azure tests and none of our Travis tests. If the branch starts with travis-test-, only our Travis tests will be run.

5.2 Code components and layout

The following components of the Certbot repository are distributed to users:

- acme contains all protocol specific code
- certbot main client code
- certbot-apache and certbot-nginx client code to configure specific web servers
- certbot-dns-* client code to configure DNS providers
certbot-auto and letsencrypt-auto shell scripts to install Certbot and its dependencies on UNIX systems
windows installer Installs Certbot on Windows and is built using the files in windows-installer/

5.2.1 Plugin-architecture

Certbot has a plugin architecture to facilitate support for different web servers, other TLS servers, and operating systems. The interfaces available for plugins to implement are defined in interfaces.py and plugins/common.py.

The main two plugin interfaces are IAuthenticator, which implements various ways of proving domain control to a certificate authority, and IInstaller, which configures a server to use a certificate once it is issued. Some plugins, like the built-in Apache and Nginx plugins, implement both interfaces and perform both tasks. Others, like the built-in Standalone authenticator, implement just one interface.

There are also IDisplay plugins, which can change how prompts are displayed to a user.

5.2.2 Authenticators

Authenticators are plugins that prove control of a domain name by solving a challenge provided by the ACME server. ACME currently defines several types of challenges: HTTP, TLS-ALPN, and DNS, represented by classes in acme.challenges. An authenticator plugin should implement support for at least one challenge type.

An Authenticator indicates which challenges it supports by implementing get_chall_pref(domain) to return a sorted list of challenge types in preference order.

An Authenticator must also implement perform(achalls), which “performs” a list of challenges by, for instance, provisioning a file on an HTTP server, or setting a TXT record in DNS. Once all challenges have succeeded or failed, Certbot will call the plugin’s cleanup(achalls) method to remove any files or DNS records that were needed only during authentication.

5.2.3 Installer

Installers plugins exist to actually setup the certificate in a server, possibly tweak the security configuration to make it more correct and secure (Fix some mixed content problems, turn on HSTS, redirect to HTTPS, etc). Installer plugins tell the main client about their abilities to do the latter via the supported_enhancements() call. We currently have two Installers in the tree, the ApacheConfigurator and the NginxConfigurator. External projects have made some progress toward support for IIS, Icecast and Plesk.

Installers and Authenticators will oftentimes be the same class/object (because for instance both tasks can be performed by a webserver like nginx) though this is not always the case (the standalone plugin is an authenticator that listens on port 80, but it cannot install certs; a postfix plugin would be an installer but not an authenticator).

Installers and Authenticators are kept separate because it should be possible to use the StandaloneAuthenticator (it sets up its own Python server to perform challenges) with a program that cannot solve challenges itself (Such as MTA installers).

5.2.4 Installer Development

There are a few existing classes that may be beneficial while developing a new IInstaller. Installers aimed to reconfigure UNIX servers may use Augeas for configuration parsing and can inherit from AugeasConfigurator class to handle much of the interface. Installers that are unable to use Augeas may still find the Reverter class helpful in handling configuration checkpoints and rollback.
Writing your own plugin

Note: The Certbot team is not currently accepting any new DNS plugins because we want to rethink our approach to the challenge and resolve some issues like #6464, #6503, and #6504 first.

In the meantime, you’re welcome to release it as a third-party plugin. See certbot-dns-ispconfig for one example of that.

Certbot client supports dynamic discovery of plugins through the setuptools entry points using the certbot.plugins group. This way you can, for example, create a custom implementation of IAuthenticator or the Installer without having to merge it with the core upstream source code. An example is provided in examples/plugins/ directory.

While developing, you can install your plugin into a Certbot development virtualenv like this:

```
. venv/bin/activate
pip install -e examples/plugins/
certbot_test plugins
```

Your plugin should show up in the output of the last command. If not, it was not installed properly.

Once you’ve finished your plugin and published it, you can have your users install it system-wide with pip install. Note that this will only work for users who have Certbot installed from OS packages or via pip. Users who run certbot-auto are currently unable to use third-party plugins. It’s technically possible to install third-party plugins into the virtualenv used by certbot-auto, but they will be wiped away when certbot-auto upgrades.

5.3 Coding style

Please:

1. Be consistent with the rest of the code.
3. Follow the Google Python Style Guide, with the exception that we use Sphinx-style documentation:

```
def foo(arg):
    """Short description."
    :param int arg: Some number.
    :returns: Argument
    :rtype: int
    """
    return arg
```

4. Remember to use pylint.

5.4 Use certbot.compat.os instead of os

Python’s standard library os module lacks full support for several Windows security features about file permissions (eg. DACLs). However several files handled by Certbot (eg. private keys) need strongly restricted access on both Linux and Windows.
To help with this, the `certbot.compat.os` module wraps the standard `os` module, and forbids usage of methods that lack support for these Windows security features.

As a developer, when working on Certbot or its plugins, you must use `certbot.compat.os` in every place you would need `os` (e.g. `from certbot.compat import os` instead of `import os`). Otherwise the tests will fail when your PR is submitted.

5.5 Mypy type annotations

Certbot uses the `mypy` static type checker. Python 3 natively supports official type annotations, which can then be tested for consistency using mypy. Python 2 doesn’t, but type annotations can be added in comments. Mypy does some type checks even without type annotations; we can find bugs in Certbot even without a fully annotated codebase.

Certbot supports both Python 2 and 3, so we’re using Python 2-style annotations.

Zulip wrote a great guide to using mypy. It’s useful, but you don’t have to read the whole thing to start contributing to Certbot.

To run mypy on Certbot, use `tox -e mypy` on a machine that has Python 3 installed.

Note that instead of just importing `typing`, due to packaging issues, in Certbot we import from `acme.magic_typing` and have to add some comments for pylint like this:

```python
from acme.magic_typing import Dict
```

Also note that OpenSSL, which we rely on, has type definitions for crypto but not SSL. We use both. Those imports should look like this:

```python
from OpenSSL import crypto
from OpenSSL import SSL # type: ignore # https://github.com/python/typeshed/issues/2052
```

5.6 Submitting a pull request

Steps:

1. Write your code! When doing this, you should add `mypy type annotations` for any functions you add or modify. You can check that you’ve done this correctly by running `tox -e mypy` on a machine that has Python 3 installed.

2. Make sure your environment is set up properly and that you’re in your virtualenv. You can do this by following the instructions in the `Getting Started` section.

3. Run `tox -e lint` to check for pylint errors. Fix any errors.

4. Run `tox --skip-missing-interpreters` to run the entire test suite including coverage. The `--skip-missing-interpreters` argument ignores missing versions of Python needed for running the tests. Fix any errors.

5. Submit the PR. Once your PR is open, please do not force push to the branch containing your pull request to squash or amend commits. We use `squash merges` on PRs and rewriting commits makes changes harder to track between reviews.

6. Did your tests pass on Travis? If they didn’t, fix any errors.
5.7 Asking for help

If you have any questions while working on a Certbot issue, don’t hesitate to ask for help! You can do this in the Certbot channel in EFF’s Mattermost instance for its open source projects as described below.

You can get involved with several of EFF’s software projects such as Certbot at the EFF Open Source Contributor Chat Platform. By signing up for the EFF Open Source Contributor Chat Platform, you consent to share your personal information with the Electronic Frontier Foundation, which is the operator and data controller for this platform. The channels will be available both to EFF, and to other users of EFFOSCCP, who may use or disclose information in these channels outside of EFFOSCCP. EFF will use your information, according to the Privacy Policy, to further the mission of EFF, including hosting and moderating the discussions on this platform.

Use of EFFOSCCP is subject to the EFF Code of Conduct. When investigating an alleged Code of Conduct violation, EFF may review discussion channels or direct messages.

5.8 Updating certbot-auto and letsencrypt-auto

Note: We are currently only accepting changes to certbot-auto that fix regressions on platforms where certbot-auto is the recommended installation method at https://certbot.eff.org/instructions. If you are unsure if a change you want to make qualifies, don’t hesitate to ask for help!

5.8.1 Updating the scripts

Developers should *not* modify the certbot-auto and letsencrypt-auto files in the root directory of the repository. Rather, modify the letsencrypt-auto.template and associated platform-specific shell scripts in the letsencrypt-auto-source and letsencrypt-auto-source/pieces/bootstrappers directory, respectively.

5.8.2 Building letsencrypt-auto-source/letsencrypt-auto

Once changes to any of the aforementioned files have been made, the letsencrypt-auto-source/letsencrypt-auto script should be updated. In lieu of manually updating this script, run the build script, which lives at letsencrypt-auto-source/build.py:

```
python letsencrypt-auto-source/build.py
```

Running build.py will update the letsencrypt-auto-source/letsencrypt-auto script. Note that the certbot-auto and letsencrypt-auto scripts in the root directory of the repository will remain *unchanged* after this script is run. Your changes will be propagated to these files during the next release of Certbot.

5.8.3 Opening a PR

When opening a PR, ensure that the following files are committed:

1. letsencrypt-auto-source/letsencrypt-auto.template and letsencrypt-auto-source/pieces/bootstrappers/*
2. letsencrypt-auto-source/letsencrypt-auto (generated by build.py)
It might also be a good idea to double check that no changes were inadvertently made to the certbot-auto or letsencrypt-auto scripts in the root of the repository. These scripts will be updated by the core developers during the next release.

5.9 Updating the documentation

Many of the packages in the Certbot repository have documentation in a docs/ directory. This directory is located under the top level directory for the package. For instance, Certbot’s documentation is under certbot/docs.

To build the documentation of a package, make sure you have followed the instructions to set up a local copy of Certbot including activating the virtual environment. After that, cd to the docs directory you want to build and run the command:

```bash
make clean html
```

This would generate the HTML documentation in _build/html in your current docs/ directory.

5.10 Running the client with Docker

You can use Docker Compose to quickly set up an environment for running and testing Certbot. To install Docker Compose, follow the instructions at https://docs.docker.com/compose/install/.

Note: Linux users can simply run pip install docker-compose to get Docker Compose after installing Docker Engine and activating your shell as described in the Getting Started section.

Now you can develop on your host machine, but run Certbot and test your changes in Docker. When using docker-compose make sure you are inside your clone of the Certbot repository. As an example, you can run the following command to check for linting errors:

```bash
docker-compose run --rm --service-ports development bash -c 'tox -e lint'
```

You can also leave a terminal open running a shell in the Docker container and modify Certbot code in another window. The Certbot repo on your host machine is mounted inside of the container so any changes you make immediately take effect. To do this, run:

```bash
docker-compose run --rm --service-ports development bash
```

Now running the check for linting errors described above is as easy as:

```bash
tox -e lint
```

5.11 Notes on OS dependencies

OS-level dependencies can be installed like so:

```bash
./certbot-auto --debug --os-packages-only
```

In general...

- `sudo` is required as a suggested way of running privileged process
• Python 2.7 or 3.5+ is required
• Augeas is required for the Python bindings
• virtualenv is used for managing other Python library dependencies

5.11.1 FreeBSD

FreeBSD by default uses tcsh. In order to activate virtualenv (see above), you will need a compatible shell, e.g. pkg install bash && bash.
6.1 Releases

We release packages and upload them to PyPI (wheels and source tarballs).

- https://pypi.python.org/pypi/acme
- https://pypi.python.org/pypi/certbot
- https://pypi.python.org/pypi/certbot-apache
- https://pypi.python.org/pypi/certbot-nginx
- https://pypi.python.org/pypi/certbot-dns-cloudflare
- https://pypi.python.org/pypi/certbot-dns-cloudxns
- https://pypi.python.org/pypi/certbot-dns-digitalocean
- https://pypi.python.org/pypi/certbot-dns-dnsimple
- https://pypi.python.org/pypi/certbot-dns-dnsmadeeasy
- https://pypi.python.org/pypi/certbot-dns-google
- https://pypi.python.org/pypi/certbot-dns-linode
- https://pypi.python.org/pypi/certbot-dns-luadns
- https://pypi.python.org/pypi/certbot-dns-nsone
- https://pypi.python.org/pypi/certbot-dns-ovh
- https://pypi.python.org/pypi/certbot-dns-rfc2136
- https://pypi.python.org/pypi/certbot-dns-route53

The following scripts are used in the process:

We use git tags to identify releases, using Semantic Versioning. For example: v0.11.1.

Our packages are cryptographically signed and their signature can be verified using the PGP key A2CFB51FA275A7286234E7B24D17C995CD9775F2. This key can be found on major key servers and at https://dl.eff.org/certbot.pub.
6.2 Notes for package maintainers

0. Please use our tagged releases, not master!

1. Do not package certbot-compatibility-test as it’s only used internally.

2. To run tests on our packages, you should use python setup.py test. Doing things like running pytest directly on our package files may not work because Certbot relies on setuptools to register and find its plugins.

3. If you’d like to include automated renewal in your package certbot renew -q should be added to crontab or systemd timer. Additionally you should include a random per-machine time offset to avoid having a large number of your clients hit Let’s Encrypt’s servers simultaneously.

4. jws is an internal script for acme module and it doesn’t have to be packaged - it’s mostly for debugging: you can use it as echo foo | jws sign | jws verify.

5. Do get in touch with us. We are happy to make any changes that will make packaging easier. If you need to apply some patches don’t do it downstream - make a PR here.
All Certbot components including `acme`, Certbot, and `non-third party plugins` follow Semantic Versioning both for its Python `API` and for the application itself. This means that we will not change behavior in a backwards incompatible way except in a new major version of the project.

Note: None of this applies to the behavior of Certbot distribution mechanisms such as `certbot-auto` or OS packages whose behavior may change at any time. Semantic versioning only applies to the common Certbot components that are installed by various distribution methods.

For Certbot as an application, the command line interface and non-interactive behavior can be considered stable with two exceptions. The first is that no aspects of Certbot’s console or log output should be considered stable and it may change at any time. The second is that Certbot’s behavior should only be considered stable with certain files but not all. Files with which users should expect Certbot to maintain its current behavior with are:

- `/etc/letsencrypt/live/<domain>/{cert,chain,fullchain,privkey}.pem` where `<domain>` is the name given to `--cert-name`. If `--cert-name` is not set by the user, it is the first domain given to `--domains`.
- `CLI configuration files`
- `Hook directories in /etc/letsencrypt/renewal-hooks`

Certbot’s behavior with other files may change at any point.

Another area where Certbot should not be considered stable is its behavior when not run in non-interactive mode which also may change at any point.

In general, if we’re making a change that we expect will break some users, we will bump the major version and will have warned about it in a prior release when possible. For our Python API, we will issue warnings using Python’s warning module. For application level changes, we will print and log warning messages.
RESOURCES

Documentation: https://certbot.eff.org/docs
Software project: https://github.com/certbot/certbot
Notes for developers: https://certbot.eff.org/docs/contributing.html
Main Website: https://certbot.eff.org
Let’s Encrypt Website: https://letsencrypt.org
Community: https://community.letsencrypt.org
ACME spec: http://ietf-wg-acme.github.io/acme/
ACME working area in github: https://github.com/ietf-wg-acme/acme

9.1 certbot package

Certbot client.

9.1.1 Subpackages

certbot.compat package

Compatibility layer to run certbot both on Linux and Windows.

This package contains all logic that needs to be implemented specifically for Linux and for Windows. Then the rest of certbot code relies on this module to be platform agnostic.

Submodules

certbot.compat.filesystem module

Compat module to handle files security on Windows and Linux

certbot.compat.filesystem.chomp(file_path, mode)

Apply a POSIX mode on given file_path:

• for Linux, the POSIX mode will be directly applied using chmod,

• for Windows, the POSIX mode will be translated into a Windows DACL that make sense for Certbot context, and applied to the file using kernel calls.

The definition of the Windows DACL that correspond to a POSIX mode, in the context of Certbot, is explained at https://github.com/certbot/certbot/issues/6356 and is implemented by the method _generate_windows_flags() .

Parameters

• file_path(str) – Path of the file

• mode(int) – POSIX mode to apply

certbot.compat.filesystem.copy_ownership_and_apply_mode(src, dst, mode, copy_user, copy_group)

Copy ownership (user and optionally group on Linux) from the source to the destination, then apply given mode in compatible way for Linux and Windows. This replaces the os.chown command. :param str src: Path of the source file :param str dst: Path of the destination file :param int mode: Permission mode to apply on the
destination file

:param bool copy_user: Copy user if True
:param bool copy_group: Copy group if True on Linux (has no effect on Windows)

```python
certbot.compat.filesystem.check_mode(file_path, mode)
```

Check if the given mode matches the permissions of the given file. On Linux, will make a direct comparison, on Windows, mode will be compared against the security model.

:param str file_path: Path of the file
:param int mode: POSIX mode to test

:rtype: bool
:return: True if the POSIX mode matches the file permissions

```python
certbot.compat.filesystem.check_owner(file_path)
```

Check if given file is owned by current user.

:param str file_path: File path to check

:rtype: bool
:return: True if given file is owned by current user, False otherwise.

```python
certbot.compat.filesystem.check_permissions(file_path, mode)
```

Check if given file has the given mode and is owned by current user.

:param str file_path: File path to check
:param int mode: POSIX mode to check

:rtype: bool
:return: True if file has correct mode and owner, False otherwise.

```python
certbot.compat.filesystem.open(file_path, flags, mode=511)
```

Wrapper of original os.open function, that will ensure on Windows that given mode is correctly applied.

:param str file_path: The file path to open
:param int flags: Flags to apply on file while opened
:param int mode: POSIX mode to apply on file when opened,

Python defaults will be applied if None

Returns the file descriptor to the opened file

:rtype: int

Raise OSError(errno.EEXIST) if the file already exists and os.O_CREAT & os.O_EXCL are set,
OSError(errno.EACCES) on Windows if the file already exists and is a directory, and
os.O_CREAT is set.

```python
certbot.compat.filesystem.makedirs(file_path, mode=511)
```

Rewrite of original os.makedirs function, that will ensure on Windows that given mode is correctly applied.

:param str file_path: The file path to open
:param int mode: POSIX mode to apply on leaf directory when created, Python defaults

will be applied if None

```python
certbot.compat.filesystem.mkdir(file_path, mode=511)
```

Rewrite of original os.mkdir function, that will ensure on Windows that given mode is correctly applied.

:param str file_path: The file path to open
:param int mode: POSIX mode to apply on directory when created, Python defaults

will be applied if None

```python
certbot.compat.filesystem.replace(src, dst)
```

Rename a file to a destination path and handles situations where the destination exists.

:param str src: The current file path.
:param str dst: The new file path.

```python
certbot.compat.filesystem.realpath(file_path)
```

Find the real path for the given path. This method resolves symlinks, including recursive symlinks, and is protected against symlinks that creates an infinite loop.

```python
certbot.compat.filesystem.is_executable(path)
```

Is path an executable file?

:param str path: path to test

:rtype: bool

```python
certbot.compat.filesystem.has_world_permissions(path)
```

Check if everybody/world has any right (read/write/execute) on a file given its path

:param str path: path to test

:rtype: bool
certbot.compat.filesystem.compute_private_key_mode(old_key, base_mode)
Calculate the POSIX mode to apply to a private key given the previous private key.
:param str old_key: path to the previous private key
:param int base_mode: the minimum modes to apply to a private key
:return: the POSIX mode to apply
:rtype: int

certbot.compat.filesystem.has_same_ownership(path1, path2)
Return True if the ownership of two files given their respective path is the same.
On Windows, ownership is checked against owner only, since files do not have a group owner.
:param str path1: path to the first file
:param str path2: path to the second file
:return: True if both files have the same ownership, False otherwise
:rtype: bool

certbot.compat.filesystem.has_min_permissions(path, min_mode)
Check if a file given its path has at least the permissions defined by the given minimal mode.
On Windows, group permissions are ignored since files do not have a group owner.
:param str path: path to the file to check
:param int min_mode: the minimal permissions expected
:return: True if the file matches the minimal permissions expectations, False otherwise
:rtype: bool

certbot.compat.misc module

This compat module handles various platform specific calls that do not fall into one particular category.

certbot.compat.misc.raise_for_non_administrative_windows_rights()
On Windows, raise if current shell does not have the administrative rights. Do nothing on Linux.

Raise errors.Error – If the current shell does not have administrative rights on Windows.

certbot.compat.misc.readline_with_timeout(timeout, prompt)
Read user input to return the first line entered, or raise after specified timeout.

Parameters
- timeout (float) – The timeout in seconds given to the user.
- prompt (str) – The prompt message to display to the user.

Returns The first line entered by the user.

Return type str

certbot.compat.misc.get_default_folder(folder_type)
Return the relevant default folder for the current OS

Parameters folder_type (str) – The type of folder to retrieve (config, work or logs)

Returns The relevant default folder.

Return type str

certbot.compat.misc.underscores_for_unsupported_characters_in_path(path)
Replace unsupported characters in path for current OS by underscores.
:param str path: the path to normalize
:return: the normalized path
:rtype: str

certbot.compat.os module

This compat modules is a wrapper of the core os module that forbids usage of specific operations (e.g. chown, chmod, getuid) that would be harmful to the Windows file security model of Certbot. This module is intended to replace standard os module throughout certbot projects (except acme).
certbot.compat.os.*chmod(*unused_args, **unused_kwargs)
 Method os.chmod() is forbidden

certbot.compat.os.*chown(*unused_args, **unused_kwargs)
 Method os.chown() is forbidden

certbot.compat.os.*open(*unused_args, **unused_kwargs)
 Method os.open() is forbidden

certbot.compat.os.*mkdir(*unused_args, **unused_kwargs)
 Method os.mkdir() is forbidden

certbot.compat.os.*makedirs(*unused_args, **unused_kwargs)
 Method os.makedirs() is forbidden

certbot.compat.os.*rename(*unused_args, **unused_kwargs)
 Method os.rename() is forbidden

certbot.compat.os.*access(*unused_args, **unused_kwargs)
 Method os.access() is forbidden

certbot.compat.os.*stat(*unused_args, **unused_kwargs)
 Method os.stat() is forbidden

certbot.compat.os.*fstat(*unused_args, **unused_kwargs)
 Method os.fstat() is forbidden

certbot.compat.os.*WCOREDUMP(status) → bool
 Return True if the process returning ‘status’ was dumped to a core file.

certbot.compat.os.*WEXITSTATUS(status) → integer
 Return the process return code from ‘status’.

certbot.compat.os.*WIFCONTINUED(status) → bool
 Return True if the process returning ‘status’ was continued from a job control stop.

certbot.compat.os.*WIFEXITED(status) → bool
 Return true if the process returning ‘status’ exited using the exit() system call.

certbot.compat.os.*WIFSIGNALED(status) → bool
 Return True if the process returning ‘status’ was terminated by a signal.

certbot.compat.os.*WIFSTOPPED(status) → bool
 Return True if the process returning ‘status’ was stopped.

certbot.compat.os.*WSTOPSIG(status) → integer
 Return the signal that stopped the process that provided the ‘status’ value.

certbot.compat.os.*WTERMSIG(status) → integer
 Return the signal that terminated the process that provided the ‘status’ value.

certbot.compat.os.*abort() → does not return!
 Abort the interpreter immediately. This ‘dumps core’ or otherwise fails in the hardest way possible on the hosting operating system.

certbot.compat.os.*chdir(path)
 Change the current working directory to the specified path.

certbot.compat.os.*chroot(path)
 Change root directory to path.

certbot.compat.os.*close(fd)
 Close a file descriptor (for low level IO).
Certbot Documentation, Release 1.4.0.dev0

certbot.compat.os.

closerange\((fd_low, fd_high) \)
Closes all file descriptors in \([fd_low, fd_high), ignoring errors.\]

certbot.compat.os.

confstr\((name) \) → string
Return a string-valued system configuration variable.

certbot.compat.os.

ctermid\() \) → string
Return the name of the controlling terminal for this process.

certbot.compat.os.

dup\((fd) \) → fd2
Return a duplicate of a file descriptor.

certbot.compat.os.

dup2\((old_fd, new_fd) \)
Duplicate file descriptor.

certbot.compat.os.

error
alias of exceptions.OSError

certbot.compat.os.

execv\((path, args) \)
Execute an executable path with arguments, replacing current process.

\quad path: path of executable file \quad args: tuple or list of strings

certbot.compat.os.

execve\((path, args, env) \)
Execute a path with arguments and environment, replacing current process.

\quad path: path of executable file \quad args: tuple or list of arguments \quad env: dictionary of strings mapping to strings

certbot.compat.os.

fchdir\((fildes) \)
Change to the directory of the given file descriptor. fildes must be opened on a directory, not a file.

certbot.compat.os.

fchmod\((fd, mode) \)
Change the access permissions of the file given by file descriptor fd.

certbot.compat.os.

fchown\((fd, uid, gid) \)
Change the owner and group id of the file given by file descriptor fd to the numeric uid and gid.

certbot.compat.os.

fdatasync\((fildes) \)
force write of file with filedescriptor to disk. does not force update of metadata.

certbot.compat.os.

fdopen\((fd, [mode='r', bufsize]) \) → file_object
Return an open file object connected to a file descriptor.

certbot.compat.os.

fork\() \) → pid
Fork a child process. Return 0 to child process and PID of child to parent process.

certbot.compat.os.

forkpty\() \) → (pid, master_fd)
Fork a new process with a new pseudo-terminal as controlling tty.

\quad Like fork(), return 0 as pid to child process, and PID of child to parent. To both, return fd of newly opened pseudo-terminal.

certbot.compat.os.

fpathconf\((fd, name) \) → integer
Return the configuration limit name for the file descriptor fd. If there is no limit, return -1.

certbot.compat.os.

fstatvfs\((fd) \) → statvfs result
Perform an fstatvfs system call on the given fd.

certbot.compat.os.

fsync\((fildes) \)
force write of file with filedescriptor to disk.

certbot.compat.os.

ftruncate\((fd, length) \)
Truncate a file to a specified length.
Certbot Documentation, Release 1.4.0.dev0

certbot.compat.os.getcwd() \rightarrow \text{path}
 Return a string representing the current working directory.

certbot.compat.os.getcwdu() \rightarrow \text{path}
 Return a unicode string representing the current working directory.

certbot.compat.os.getegid() \rightarrow \text{egid}
 Return the current process’s effective group id.

certbot.compat.os.geteuid() \rightarrow \text{euid}
 Return the current process’s effective user id.

certbot.compat.os.getgid() \rightarrow \text{gid}
 Return the current process’s group id.

certbot.compat.os.getgroups() \rightarrow \text{list of group IDs}
 Return list of supplemental group IDs for the process.

certbot.compat.os.getloadavg() \rightarrow (\text{float, float, float})
 Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
 OSError if the load average was unobtainable.

certbot.compat.os.getlogin() \rightarrow \text{string}
 Return the actual login name.

certbot.compat.os.getpgrp() \rightarrow \text{pgrp}
 Return the current process group id.

certbot.compat.os.getpid() \rightarrow \text{pid}
 Return the current process id

certbot.compat.os.getppid() \rightarrow \text{ppid}
 Return the parent’s process id.

certbot.compat.os.getresgid() \rightarrow (\text{rgid, egid, sgid})
 Get tuple of the current process’s real, effective, and saved group ids.

certbot.compat.os.getresuid() \rightarrow (\text{ruid, euid, suid})
 Get tuple of the current process’s real, effective, and saved user ids.

certbot.compat.os.getsid(pid) \rightarrow \text{sid}
 Call the system call getsid().

certbot.compat.os.getuid() \rightarrow \text{uid}
 Return the current process’s user id.

certbot.compat.os.initgroups(username, gid) \rightarrow \text{None}
 Call the system initgroups() to initialize the group access list with all of the groups of which the specified
 username is a member, plus the specified group id.

certbot.compat.os.isatty(fd) \rightarrow \text{bool}
 Return True if the file descriptor ‘fd’ is an open file descriptor connected to the slave end of a terminal.

certbot.compat.os.kill(pid, sig)
 Kill a process with a signal.

certbot.compat.os.killpg(pgid, sig)
 Kill a process group with a signal.

certbot.compat.os.lchown(path, uid, gid)
 Change the owner and group id of path to the numeric uid and gid. This function will not follow symbolic links.
certbot.compat.os.link(src, dst)
Create a hard link to a file.

certbot.compat.os.listdir(path) \to list_of_strings
Return a list containing the names of the entries in the directory.

 path: path of directory to list
 The list is in arbitrary order. It does not include the special entries ‘.’ and ‘..’ even if they are present in the directory.

certbot.compat.os.lseek(fd, pos, how) \to newpos
Set the current position of a file descriptor. Return the new cursor position in bytes, starting from the beginning.

certbot.compat.os.lstat(path) \to stat result
Like stat(path), but do not follow symbolic links.

certbot.compat.os.major(device) \to major number
Extracts a device major number from a raw device number.

certbot.compat.os.makedev(major, minor) \to device number
Composes a raw device number from the major and minor device numbers.

certbot.compat.os.minor(device) \to minor number
Extracts a device minor number from a raw device number.

certbot.compat.os.mkfifo(filename[, mode=0666])
Create a FIFO (a POSIX named pipe).

certbot.compat.os.mknod(filename[, mode=0600, device])
Create a filesystem node (file, device special file or named pipe) named filename. mode specifies both the permissions to use and the type of node to be created, being combined (bitwise OR) with one of S_IFREG, S_IFCHR, S_IFBLK, and S_IFIFO. For S_IFCHR and S_IFBLK, device defines the newly created device special file (probably using os.makedev()), otherwise it is ignored.

certbot.compat.os.nice(inc) \to new_priority
Decrease the priority of process by inc and return the new priority.

certbot.compat.os.openpty() \to (master_fd, slave_fd)
Open a pseudo-terminal, returning open fd’s for both master and slave end.

certbot.compat.os.pathconf(path, name) \to integer
Return the configuration limit name for the file or directory path. If there is no limit, return -1.

certbot.compat.os.pipe() \to (read_end, write_end)
Create a pipe.

certbot.compat.os.popen(command[, mode='r'[, bufsize]]) \to pipe
Open a pipe to/from a command returning a file object.

certbot.compat.os.putenv(key, value)
Change or add an environment variable.

certbot.compat.os.read(fd, buffsize) \to string
Read a file descriptor.

certbot.compat.os.readlink(path) \to path
Return a string representing the path to which the symbolic link points.

certbot.compat.os.remove(path)
Remove a file (same as unlink(path)).

certbot.compat.os.rmdir(path)
Remove a directory.

9.1. certbot package

63
setegid

Set the current process’s effective group id.

seteuid

Set the current process’s effective user id.

setgid

Set the current process’s group id.

setgroups

Set the groups of the current process to list.

setpgid

Call the system call setpgid().

setpgrp

Make this process the process group leader.

setregid

Set the current process’s real and effective group ids.

setresgid

Set the current process’s real, effective, and saved group ids.

setresuid

Set the current process’s real, effective, and saved user ids.

setreuid

Set the current process’s real and effective user ids.

setsid

Call the system call setsid().

setuid

Set the current process’s user id.

stat_float_times

Determine whether os.[lf]stat represents time stamps as float objects. If newval is True, future calls to stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting.

class certbot.compat.os.stat_result

Bases: object

stat_result: Result from stat or lstat.

This object may be accessed either as a tuple of (mode, ino, dev, nlink, uid, gid, size, atime, mtime, ctime) or via the attributes st_mode, st_ino, st_dev, st_nlink, st_uid, and so on.

Posix/windows: If your platform supports st_blksize, st_blocks, st_rdev, or st_flags, they are available as attributes only.

See os.stat for more information.

n_fields = 16

n_sequence_fields = 10

n_unnamed_fields = 3

st_atime

time of last access

st_blksize

blocksize for filesystem I/O
st_blocks
 number of blocks allocated

st_ctime
 time of last change

st_dev
 device

st_gid
 group ID of owner

st_ino
 inode

st_mode
 protection bits

st_mtime
 time of last modification

st_nlink
 number of hard links

st_rdev
 device type (if inode device)

st_size
 total size, in bytes

st_uid
 user ID of owner

certbot.compat.os.statvfs(path) → statvfs result
 Perform a statvfs system call on the given path.

class certbot.compat.os.statvfs_result
 Bases: object

 statvfs_result: Result from statvfs or fstatvfs.

 This object may be accessed either as a tuple of (bsize, fsize, blocks, bfree, bavail, files, ffree, favail, flag, namemax),

 or via the attributes f_bsize, f_fsize, f_blocks, f_bfree, and so on.

 See os.statvfs for more information.

 f_bavail

 f_bfree

 f_blocks

 f_bsize

 f_favail

 f_ffree

 f_files

 f_flag

 f_frsize

 f_namemax
n_fields = 10
n_sequence_fields = 10
n_unnamed_fields = 0

certbot.compat.os.strerror(code) → string
 Translate an error code to a message string.

certbot.compat.os.symlink(src, dst)
 Create a symbolic link pointing to src named dst.

certbot.compat.os.sysconf(name) → integer
 Return an integer-valued system configuration variable.

certbot.compat.os.system(command) → exit_status
 Execute the command (a string) in a subshell.

certbot.compat.os.tcgetpgrp(fd) → pgid
 Return the process group associated with the terminal given by a fd.

certbot.compat.os.tcsetpgrp(fd, pgid)
 Set the process group associated with the terminal given by a fd.

certbot.compat.os.tempnam([dir[, prefix]]) → string
 Return a unique name for a temporary file. The directory and a prefix may be specified as strings; they may be
 omitted or None if not needed.

certbot.compat.os.times() -> (utime, stime, cutime, cstime, elapsed_time)
 Return a tuple of floating point numbers indicating process times.

certbot.compat.os.tmpfile() → file object
 Create a temporary file with no directory entries.

certbot.compat.os.tmpnam() → string
 Return a unique name for a temporary file.

certbot.compat.os.ttyname(fd) → string
 Return the name of the terminal device connected to ‘fd’.

certbot.compat.os.umask(new_mask) → old_mask
 Set the current numeric umask and return the previous umask.

certbot.compat.os.uname() -> (sysname, nodename, release, version, machine)
 Return a tuple identifying the current operating system.

certbot.compat.os.unlink(path)
 Remove a file (same as remove(path)).

certbot.compat.os.unsetenv(key)
 Delete an environment variable.

certbot.compat.os.urandom(n) → str
 Return n random bytes suitable for cryptographic use.

certbot.compat.os.utime(path, (atime, mtime))
 utime(path, None)
 Set the access and modified time of the file to the given values. If the second form is used, set the access and
 modified times to the current time.

certbot.compat.os.wait() -> (pid, status)
 Wait for completion of a child process.
certbot.compat.os.wait3(options) \rightarrow (pid, status, rusage)
Wait for completion of a child process.

certbot.compat.os.wait4(pid, options) \rightarrow (pid, status, rusage)
Wait for completion of a given child process.

certbot.compat.os.waitpid(pid, options) \rightarrow (pid, status)
Wait for completion of a given child process.

certbot.compat.os.write(fd, string) \rightarrow byteswritten
Write a string to a file descriptor.

certbot.compat.os.removedirs(path)
Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the leaf
directory is successfully removed, directories corresponding to rightmost path segments will be pruned away
until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored – they
generally mean that a directory was not empty.

certbot.compat.os.renames(old, new)
Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation
of any intermediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned until either the whole path
is consumed or a nonempty directory is found.

Note: this function can fail with the new directory structure made if you lack permissions needed to unlink the
leaf directory or file.

certbot.compat.os.walk(top, topdown=True, onerror=None, followlinks=False)
Directory tree generator.

For each directory in the directory tree rooted at top (including top itself, but excluding ‘.’ and ‘.’), yields a
3-tuple

dirpath, dirnames, filenames

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath
(excluding ‘.’ and ‘.’). filenames is a list of the names of the non-directory files in dirpath. Note that the names
in the lists are just names, with no path components. To get a full path (which begins with top) to a file or
directory in dirpath, do os.path.join(dirpath, name).

If optional arg ‘topdown’ is true or not specified, the triple for a directory is generated before the triples for
any of its subdirectories (directories are generated top down). If topdown is false, the triple for a directory is
generated after the triples for all of its subdirectories (directories are generated bottom up).

When topdown is true, the caller can modify the dirnames list in-place (e.g., via del or slice assignment), and
walk will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the
search, or to impose a specific order of visiting. Modifying dirnames when topdown is false is ineffective, since
the directories in dirnames have already been generated by the time dirnames itself is generated. No matter the
value of topdown, the list of subdirectories is retrieved before the tuples for the directory and its subdirectories
are generated.

By default errors from the os.listdir() call are ignored. If optional arg ‘onerror’ is specified, it should be a
function; it will be called with one argument, an os.error instance. It can report the error to continue with the
walk, or raise the exception to abort the walk. Note that the filename is available as the filename attribute of the
exception object.

By default, os.walk does not follow symbolic links to subdirectories on systems that support them. In order to
get this functionality, set the optional argument ‘followlinks’ to true.

Caution: if you pass a relative pathname for top, don’t change the current working directory between resump-
tions of walk. walk never changes the current directory, and assumes that the client doesn’t either.
Example:

```python
import os from os.path import join, getsize for root, dirs, files in os.walk('python/Lib/email'):
    print root, "consumes", print sum([getsize(join(root, name)) for name in files]), print "bytes in",
    len(files), "non-directory files" if 'CVS' in dirs:
    dirs.remove('CVS') # don’t visit CVS directories

    certbot.compat.os.execl (file, *args)
    Execute the executable file with argument list args, replacing the current process.

    certbot.compat.os.execlpe (file, *args, env)
    Execute the executable file with argument list args and environment env, replacing the current process.

    certbot.compat.os.execlp (file, *args)
    Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process.

    certbot.compat.os.execlpe (file, *args, env)
    Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process.

    certbot.compat.os.spawnv (mode, file, args) \rightarrow integer
    Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process.
    If mode == P_WAIT return the process’s exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

    certbot.compat.os.spawnve (mode, file, args, env) \rightarrow integer
    Execute file with arguments from args in a subprocess with the specified environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

    certbot_compat.os.spawnl (mode, file, *args) \rightarrow integer
    Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process.
    If mode == P_WAIT return the process’s exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

    certbot_compat.os.spawnle (mode, file, *args, env) \rightarrow integer
    Execute file with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

    certbot_compat.os.spawnvp (mode, file, args) \rightarrow integer
    Execute file (which is looked for along $PATH) with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

    certbot_compat.os.spawnvpe (mode, file, args, env) \rightarrow integer
    Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied
```
environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s
exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

certbot.compat.os.spawnlp(mode, file, *args) → integer
Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied
environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s
exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

certbot.compat.os.spawnlpe(mode, file, *args, env) → integer
Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied
environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process’s
exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it.

certbot.compat.os.popen2(cmd, mode='t', bufsize=-1)
Execute the shell command ‘cmd’ in a sub-process. On UNIX, ‘cmd’ may be a sequence, in which case ar-
guments will be passed directly to the program without shell intervention (as with os.spawnv()). If ‘cmd’ is a
string it will be passed to the shell (as with os.system()). If ‘bufsize’ is specified, it sets the buffer size for the
I/O pipes. The file objects (child_stdin, child_stdout) are returned.

certbot.compat.os.popen3(cmd, mode='t', bufsize=-1)
Execute the shell command ‘cmd’ in a sub-process. On UNIX, ‘cmd’ may be a sequence, in which case ar-
guments will be passed directly to the program without shell intervention (as with os.spawnv()). If ‘cmd’ is a
string it will be passed to the shell (as with os.system()). If ‘bufsize’ is specified, it sets the buffer size for the
I/O pipes. The file objects (child_stdin, child_stdout, child_stderr) are returned.

certbot.compat.os.popen4(cmd, mode='t', bufsize=-1)
Execute the shell command ‘cmd’ in a sub-process. On UNIX, ‘cmd’ may be a sequence, in which case ar-
guments will be passed directly to the program without shell intervention (as with os.spawnv()). If ‘cmd’ is a
string it will be passed to the shell (as with os.system()). If ‘bufsize’ is specified, it sets the buffer size for the
I/O pipes. The file objects (child_stdin, child_stdout_stderr) are returned.

certbot.display package

Certbot display utilities.

Submodules

certbot.display.ops module

Contains UI methods for LE user operations.

certbot.display.ops.get_email(invalid=False, optional=True)
Prompt for valid email address.

Parameters

• invalid (bool) – True if an invalid address was provided by the user
• optional (bool) – True if the user can use --register-unsafely-without-email to avoid
 providing an e-mail

Returns e-mail address

Return type str

Raises errors.Error – if the user cancels

9.1. certbot package 69
certbot.display.ops.choose_account (accounts)
Choose an account.

Parameters accounts (list) – Containing at least one Account

certbot.display.ops.choose_values (values, question=None)
Display screen to let user pick one or multiple values from the provided list.

Parameters values (list) – Values to select from
Returns List of selected values
Return type list

certbot.display.ops.choose_names (installer, question=None)
Display screen to select domains to validate.

Parameters
• installer (certbot.interfaces.IInstaller) – An installer object
• question (str) – Overriding default question to ask the user if asked to choose from domain names.

Returns List of selected names
Return type list of str

certbot.display.ops.get_valid_domains (domains)
Helper method for choose_names that implements basic checks on domain names

Parameters domains (list) – Domain names to validate
Returns List of valid domains
Return type list

certbot.display.ops.success_installation (domains)
Display a box confirming the installation of HTTPS.

Parameters domains (list) – Domain names which were enabled

certbot.display.ops.success_renewal (domains)
Display a box confirming the renewal of an existing certificate.

Parameters domains (list) – Domain names which were renewed

certbot.display.ops.success_revocation (cert_path)
Display a box confirming a certificate has been revoked.

Parameters cert_path (list) – path to certificate which was revoked.

certbot.display.ops.validated_input (validator, *args, **kwargs)
Like input, but with validation.

Parameters
• validator (callable) – A method which will be called on the supplied input. If the method raises an errors.Error, its text will be displayed and the user will be re-prompted.
• *args (list) – Arguments to be passed to input.
• **kwargs (dict) – Arguments to be passed to input.

Returns as input
Return type: tuple

certbot.display.ops.validated_directory(validator, *args, **kwargs)

Like directory_select, but with validation.

Parameters

- **validator** (callable) – A method which will be called on the supplied input. If the method raises an errors.Error, its text will be displayed and the user will be re-prompted.
- ***args** (list) – Arguments to be passed to directory_select.
- ****kwargs** (dict) – Arguments to be passed to directory_select.

Returns: as directory_select

Return type: tuple

certbot.display.util module

Certbot display.

certbot.display.util.OK = 'ok'
Display exit code indicating user acceptance.

certbot.display.util.CANCEL = 'cancel'
Display exit code for a user canceling the display.

certbot.display.util.HELP = 'help'
Display exit code when for when the user requests more help. (UNUSED)

certbot.display.util.ESC = 'esc'
Display exit code when the user hits Escape (UNUSED)

certbot.display.util.SIDE_FRAME = '----------'
Display boundary (alters spaces, so when copy-pasted, markdown doesn’t interpret it as a heading)

certbot.display.util.input_with_timeout(prompt=None, timeout=36000.0)
Get user input with a timeout.

Behaves the same as six.moves.input, however, an error is raised if a user doesn’t answer after timeout seconds. The default timeout value was chosen to place it just under 12 hours for users following our advice and running Certbot twice a day.

Parameters

- **prompt** (str) – prompt to provide for input
- **timeout** (float) – maximum number of seconds to wait for input

Returns: user response

Return type: str

:raises errors.Error if no answer is given before the timeout

class certbot.display.util.FileDisplay(outfile, force_interactive)
Bases: object

File-based display.

notification(message, pause=True, wrap=True, force_interactive=False)
Displays a notification and waits for user acceptance.
Parameters

- **message** *(str)* – Message to display
- **pause** *(bool)* – Whether or not the program should pause for the user’s confirmation
- **wrap** *(bool)* – Whether or not the application should wrap text
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

`menu` *(message, choices, ok_label=None, cancel_label=None, help_label=None, default=None, cli_flag=None, force_interactive=False, **unused_kwargs)*

Display a menu.

Parameters

- **message** *(str)* – title of menu
- **choices** *(list of tuples (tag, item) or list of descriptions (tags will be enumerated))*) – Menu lines, len must be > 0
- **default** – default value to return (if one exists)
- **cli_flag** *(str)* – option used to set this value with the CLI
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of *(code, index)* where `code` - str display exit code `index` - int index of the user’s selection

Return type *tuple*

`input` *(message, default=None, cli_flag=None, force_interactive=False, **unused_kwargs)*

Accept input from the user.

Parameters

- **message** *(str)* – message to display to the user
- **default** – default value to return (if one exists)
- **cli_flag** *(str)* – option used to set this value with the CLI
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of *(code, input)* where `code` - str display exit code `input` - str of the user’s input

Return type *tuple*

`yesno` *(message, yes_label='Yes', no_label='No', default=None, cli_flag=None, force_interactive=False, **unused_kwargs)*

Query the user with a yes/no question.

Yes and No label must begin with different letters, and must contain at least one letter each.

Parameters

- **message** *(str)* – question for the user
- **yes_label** *(str)* – Label of the “Yes” parameter
- **no_label** *(str)* – Label of the “No” parameter
- **default** – default value to return (if one exists)
• **cli_flag** *(str)* – option used to set this value with the CLI

• **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns True for “Yes”, False for “No”

Return type bool

checklist *(message, tags, default=None, cli_flag=None, force_interactive=False, **unused_kwargs)*

Display a checklist.

Parameters

• **message** *(str)* – Message to display to user

• **tags** *(list)* – str tags to select, len(tags) > 0

• **default** – default value to return (if one exists)

• **cli_flag** *(str)* – option used to set this value with the CLI

• **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of (code, tags) where code - str display exit code tags - list of selected tags

Return type tuple

directory_select *(message, default=None, cli_flag=None, force_interactive=False, **unused_kwargs)*

Display a directory selection screen.

Parameters

• **message** *(str)* – prompt to give the user

• **default** – default answer to prompt

• **cli_flag** *(str)* – command line option for setting an answer to this question

• **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of the form (code, string) where code - display exit code string - input entered by the user

certbot.display.util.assert_valid_call *(prompt, default, cli_flag, force_interactive)*

Verify that provided arguments is a valid IDisplay call.

Parameters

• **prompt** *(str)* – prompt for the user

• **default** – default answer to prompt

• **cli_flag** *(str)* – command line option for setting an answer to this question

• **force_interactive** *(bool)* – if interactivity is forced by the IDisplay call

class certbot.display.util.NoninteractiveDisplay *(outfile, *unused_args, **unused_kwargs)*

Bases: object

An iDisplay implementation that never asks for interactive user input

notification *(message, pause=False, wrap=True, **unused_kwargs)*

Displays a notification without waiting for user acceptance.
Parameters

- **message** *(str)* – Message to display to stdout
- **pause** *(bool)* – The NoninteractiveDisplay waits for no keyboard
- **wrap** *(bool)* – Whether or not the application should wrap text

menu *(message, choices, ok_label=None, cancel_label=None, help_label=None, default=None, cli_flag=None, **unused_kwargs)*

Avoid displaying a menu.

Parameters

- **message** *(str)* – title of menu
- **choices** *(list of tuples (tag, item) or list of descriptions (tags will be enumerated))* – Menu lines, len must be > 0
- **default** *(int)* – the default choice
- **kwargs** *(dict)* – absorbs various irrelevant labelling arguments

Returns tuple of *(code, index)* where **code** - str display exit code, **index** - int index of the user’s selection

Return type tuple

Raises `errors.MissingCommandlineFlag` – if there was no default

input *(message, default=None, cli_flag=None, **unused_kwargs)*

Accept input from the user.

Parameters **message** *(str)* – message to display to the user

Returns tuple of *(code, input)* where **code** - str display exit code, **input** - str of the user’s input

Return type tuple

Raises `errors.MissingCommandlineFlag` – if there was no default

yesno *(message, yes_label=None, no_label=None, default=None, cli_flag=None, **unused_kwargs)*

Decide Yes or No, without asking anybody

Parameters

- **message** *(str)* – question for the user
- **kwargs** *(dict)* – absorbs yes_label, no_label

Raises `errors.MissingCommandlineFlag` – if there was no default

Returns True for “Yes”, False for “No”

Return type bool

checklist *(message, tags, default=None, cli_flag=None, **unused_kwargs)*

Display a checklist.

Parameters

- **message** *(str)* – Message to display to user
- **tags** *(list)* – str tags to select, len(tags) > 0
- **kwargs** *(dict)* – absorbs default_status arg

Returns tuple of *(code, tags)* where **code** - str display exit code, **tags** - list of selected tags
Return type tuple

directory_select (message, default=None, cli_flag=None, **unused_kwargs)
 Simulate prompting the user for a directory.

 This function returns default if it is not None, otherwise, an exception is raised explaining the problem. If cli_flag is not None, the error message will include the flag that can be used to set this value with the CLI.

 Parameters
 • message (str) – prompt to give the user
 • default – default value to return (if one exists)
 • cli_flag (str) – option used to set this value with the CLI

 Returns tuple of the form (code, string) where code - int display exit code string - input entered by the user

certbot.display.util.separate_list_input (input_)
 Separate a comma or space separated list.

 Parameters input (str) – input from the user

 Returns strings

 Return type list

certbot.plugins package

Certbot plugins.

Submodules

certbot.plugins.common module

Internal class delegating to a module, and displaying warnings when attributes related to TLS-SNI-01 are accessed.

certbot.plugins.common.option_namespace (name)
 ArgumentParser options namespace (prefix of all options).

certbot.plugins.common.dest_namespace (name)
 ArgumentParser dest namespace (prefix of all destinations).

class certbot.plugins.common.Plugin (config, name)
 Bases: object

 Generic plugin.

 classmethod add_parser_arguments (add)
 Add plugin arguments to the CLI argument parser.

 NOTE: If some of your flags interact with others, you can use cli.report_config_interaction to register this to ensure values are correctly saved/overridable during renewal.

 Parameters add (callable) – Function that proxies calls to argparse. ArgumentParser.add_argument prepending options with unique plugin name prefix.
classmethod inject_parser_options(parser, name)
 Inject parser options.
 See inject_parser_options for docs.

option_namespace
 ArgumentParser options namespace (prefix of all options).

option_name(name)
 Option name (include plugin namespace).

dest_namespace
 ArgumentParser dest namespace (prefix of all destinations).

dest(var)
 Find a destination for given variable var.

conf(var)
 Find a configuration value for variable var.

class certbot.plugins.common.Installer(*args, **kwargs)
 Bases: certbot.plugins.common.Plugin

 An installer base class with reverter and ssl_dhparam methods defined.
 Installer plugins do not have to inherit from this class.

add_to_checkpoint(save_files, save_notes, temporary=False)
 Add files to a checkpoint.

 Parameters
 • save_files(set) – set of filepaths to save
 • save_notes(str) – notes about changes during the save
 • temporary(bool) – True if the files should be added to a temporary checkpoint rather than a permanent one. This is usually used for changes that will soon be reverted.

 Raises errors.PluginError – when unable to add to checkpoint

finalize_checkpoint(title)
 Timestamp and save changes made through the reverter.

 Parameters title(str) – Title describing checkpoint

 Raises errors.PluginError – when an error occurs

recovery_routine()
 Revert all previously modified files.

 Reverts all modified files that have not been saved as a checkpoint

 Raises errors.PluginError – If unable to recover the configuration

revert_temporary_config()
 Rollback temporary checkpoint.

 Raises errors.PluginError – when unable to revert config

rollback_checkpoints(rollback=1)
 Rollback saved checkpoints.

 Parameters rollback(int) – Number of checkpoints to revert

 Raises errors.PluginError – If there is a problem with the input or the function is unable to correctly revert the configuration
ssl_dhparams
Full absolute path to ssl_dhparams file.

updated_ssl_dhparams_digest
Full absolute path to digest of updated ssl_dhparams file.

install_ssl_dhparams()
Copy Certbot’s ssl_dhparams file into the system’s config dir if required.

class certbot.plugins.common.Addr(tup, ipv6=False)
Bases: object

Represents an virtual host address.

Parameters

• addr (str) – addr part of vhost address
• port (str) – port number or *, or “”

classmethod fromstring(str_addr)
Initialize Addr from string.

normalized_tuple()
Normalized representation of addr/port tuple

get_addr()
Return addr part of Addr object.

get_port()
Return port.

get_addr_obj(port)
Return new address object with same addr and new port.

get_ipv6_exploded()
Return IPv6 in normalized form

class certbot.plugins.common.ChallengePerformer(configurator)
Bases: object

Abstract base for challenge performers.

Variables

• configurator – Authenticator and installer plugin
• achalls (list of KeyAuthorizationAnnotatedChallenge) – Annotated challenges
• indices (list of int) – Holds the indices of challenges from a larger array so the user
of the class doesn’t have to.

add_chall(achall, idx=None)
Store challenge to be performed when perform() is called.

Parameters

• achall (KeyAuthorizationAnnotatedChallenge) – Annotated challenge.
• idx (int) – index to challenge in a larger array

perform()
Perform all added challenges.

Returns challenge responses

9.1. certbot package
Return type list of acme.challenges.KeyAuthorizationChallengeResponse

certbot.plugins.common.install_version_controlled_file(dest_path, digest_path, src_path, all_hashes)

Copy a file into an active location (likely the system’s config dir) if required.

Parameters

• dest_path (str) – destination path for version controlled file
• digest_path (str) – path to save a digest of the file in
• src_path (str) – path to version controlled file found in distribution
• all_hashes (list) – hashes of every released version of the file

certbot.plugins.common.dir_setup(test_dir, pkg)

Setup the directories necessary for the configurator.

certbot.plugins.dns_common module

Common code for DNS Authenticator Plugins.

class certbot.plugins.dns_common.DNSAuthenticator(config, name)
 Bases: certbot.plugins.common.Plugin

 Base class for DNS Authenticators

 classmethod add_parser_arguments(add, default_propagation_seconds=10)
 Add plugin arguments to the CLI argument parser.

 NOTE: If some of your flags interact with others, you can use cli.report_config_interaction to register this
 to ensure values are correctly saved/overridable during renewal.

 Parameters add (callable) – Function that proxies calls to argparse.
 ArgumentParser.add_argument prepending options with unique plugin name
 prefix.

get_chall_pref(unused_domain)
prepare()

perform(achalls)

cleanup(achalls)

class certbot.plugins.dns_common.CredentialsConfiguration(filename, map-
per=<function <lambda>>)

 Bases: object

 Represents a user-supplied filed which stores API credentials.

 require(required_variables)
 Ensures that the supplied set of variables are all present in the file.

 Parameters required_variables (dict) – Map of variable which must be present to
 error to display.

 Raises errors.PluginError – If one or more are missing.

 conf(var)
 Find a configuration value for variable var, as transformed by mapper.

 Parameters var (str) – The variable to get.
Returns The value of the variable.

Return type str

certbot.plugins.dns_common.validate_file(filename)
 Ensure that the specified file exists.

certbot.plugins.dns_common.validate_file_permissions(filename)
 Ensure that the specified file exists and warn about unsafe permissions.

certbot.plugins.dns_common.base_domain_name_guesses(domain)
 Return a list of progressively less-specific domain names.
 One of these will probably be the domain name known to the DNS provider.

Example

>>> base_domain_name_guesses('foo.bar.baz.example.com')
['foo.bar.baz.example.com', 'bar.baz.example.com', 'baz.example.com', 'example.com']

Parameters domain (str) – The domain for which to return guesses.

Returns The a list of less specific domain names.

Return type list

certbot.plugins.dns_common_lexicon module

Common code for DNS Authenticator Plugins built on Lexicon.

class certbot.plugins.dns_common_lexicon.LexiconClient
 Bases: object
 Encapsulates all communication with a DNS provider via Lexicon.

 add_txt_record(domain, record_name, record_content)
 Add a TXT record using the supplied information.

Parameters

• domain (str) – The domain to use to look up the managed zone.

• record_name (str) – The record name (typically beginning with ‘_acme-challenge.’).

• record_content (str) – The record content (typically the challenge validation).

Raises errors.PluginError – if an error occurs communicating with the DNS Provider API

 del_txt_record(domain, record_name, record_content)
 Delete a TXT record using the supplied information.

Parameters

• domain (str) – The domain to use to look up the managed zone.

• record_name (str) – The record name (typically beginning with ‘_acme-challenge.’).

• record_content (str) – The record content (typically the challenge validation).

Raises errors.PluginError – if an error occurs communicating with the DNS Provider API
Certbot Documentation, Release 1.4.0.dev0

certbot.plugins.dns_common_lexicon.build_lexicon_config(lexicon_provider_name, lexicon_options, provider_options)

Convenient function to build a Lexicon 2.x/3.x config object.

:param str lexicon_provider_name: the name of the lexicon provider to use
:param dict lexicon_options: options specific to lexicon
:param dict provider_options: options specific to provider

:return: configuration to apply to the provider

:rtype: ConfigurationResolver or dict

certbot.plugins.dns_test_common module

Base test class for DNS authenticators.

class certbot.plugins.dns_test_common.BaseAuthenticatorTest
 Bases: object

 A base test class to reduce duplication between test code for DNS Authenticator Plugins.

 Assumes:
 • That subclasses also subclass unittest.TestCase
 • That the authenticator is stored as self.auth

 achall = KeyAuthorizationAnnotatedChallenge(challb=DNS01(token='17817c66b60ce2e4012dfad92657527a'), domain='example.com', account_key=JWKRSA(key=<ComparableRSAKey(<cryptography.hazmat.backends.openssl.rsa._RSAPrivateKey object>)>))

test_more_info()

test_get_chall_pref()

test_parser_arguments()

certbot.plugins.dns_test_common.write(values, path)

Write the specified values to a config file.

Parameters

• values (dict) – A map of values to write.
• path (str) – Where to write the values.

certbot.plugins.dns_test_common_lexicon module

Base test class for DNS authenticators built on Lexicon.

class certbot.plugins.dns_test_common_lexicon.BaseLexiconAuthenticatorTest
 Bases: certbot.plugins.dns_test_common.BaseAuthenticatorTest

 test_perform()

 test_cleanup()

class certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest
 Bases: object

 DOMAIN_NOT_FOUND = Exception('No domain found',)

 GENERIC_ERROR
 alias of requests.exceptions.RequestException

 LOGIN_ERROR = HTTPError('400 Client Error: ...',)

 UNKNOWN_LOGIN_ERROR = HTTPError('500 Surprise! Error: ...',)

 record_prefix = '_acme-challenge'
```python
record_name = '_acme-challenge.example.com'
record_content = 'bar'
test_add_txt_record()

# Test functions for adding and deleting TXT records

test_add_txt_record_try_twice_to_find_domain()
test_add_txt_recordFail_to_find_domain()
test_add_txt_record_fail_to_authenticate()
test_add_txt_record_fail_to_authenticate_with_unknown_error()
test_add_txt_record_error_finding_domain()
test_add_txt_record_error_adding_record()

test_del_txt_record()

test_del_txt_record_fail_to_find_domain()
test_del_txt_record_fail_to_authenticate()
test_del_txt_record_fail_to_authenticate_with_unknown_error()
test_del_txt_record_error_finding_domain()
test_del_txt_record_error_deleting_record()
```

certbot.plugins.enhancements module

New interface style Certbot enhancements

certbot.plugins.enhancements.ENHANCEMENTS = ['redirect', 'ensure-http-header', 'ocsp-stapling']
List of possible *certbot.interfaces.IInstaller* enhancements.

List of expected options parameters:
- redirect: None
- ensure-http-header: name of header (i.e. Strict-Transport-Security)
- ocsp-stapling: certificate chain file path

certbot.plugins.enhancements.enabled_enhancements(config)
Generator to yield the enabled new style enhancements.

Parameters

- **config** (*certbot.interfaces.IConfig*) – Configuration.

certbot.plugins.enhancements.are_requested(config)
Checks if one or more of the requested enhancements are those of the new enhancement interfaces.

Parameters

- **config** (*certbot.interfaces.IConfig*) – Configuration.

certbot.plugins.enhancements.are_supported(config, installer)
Checks that all of the requested enhancements are supported by the installer.

Parameters

- **config** (*certbot.interfaces.IConfig*) – Configuration.
- **installer** (*interfaces.IInstaller*) – Installer object

Returns

- **bool**

Run enable method for each requested enhancement that is supported.

Parameters
Certbot Documentation, Release 1.4.0.dev0

- **lineage** (*certbot.interfaces.RenewableCert*) – Certificate lineage object
- **domains** (*str*) – List of domains in certificate to enhance
- **installer** (*interfaces.IInstaller*) – Installer object
- **config** (*certbot.interfaces.IConfig*) – Configuration.

`certbot.plugins.enhancements.populate_cli(add)`

Populates the command line flags for `certbot._internal.cli.HelpfulParser`

Parameters
add (*func*) – Add function of `certbot._internal.cli.HelpfulParser`

class `certbot.plugins.enhancements.AutoHSTSEnhancement`

Bases: `object`

Enhancement interface that installer plugins can implement in order to provide functionality that configures the software to have a ‘Strict-Transport-Security’ with initially low max-age value that will increase over time.

The plugins implementing new style enhancements are responsible of handling the saving of configuration checkpoints as well as calling possible restarts of managed software themselves. For `update_autohsts` method, the installer may have to call `prepare()` to finalize the plugin initialization.

Methods:
- **enable_autohsts** is called when the header is initially installed using a low max-age value.
- **update_autohsts** is called every time when Certbot is run using ‘renew’ verb. The max-age value should be increased over time using this method.
- **deploy_autohsts** is called for every lineage that has had its certificate renewed. A long HSTS max-age value should be set here, as we should be confident that the user is able to automatically renew their certificates.

update_autohsts (*lineage, *args, **kwargs*)

Gets called for each lineage every time Certbot is run with ‘renew’ verb. Implementation of this method should increase the max-age value.

Parameters
lineage (*certbot.interfaces.RenewableCert*) – Certificate lineage object

Note: `prepare()` method inherited from `interfaces.IPlugin` might need to be called manually within implementation of this interface method to finalize the plugin initialization.

deploy_autohsts (*lineage, *args, **kwargs*)

Gets called for a lineage when its certificate is successfully renewed. Long max-age value should be set in implementation of this method.

Parameters
lineage (*certbot.interfaces.RenewableCert*) – Certificate lineage object

enable_autohsts (*lineage, domains, *args, **kwargs*)

Enables the AutoHSTS enhancement, installing Strict-Transport-Security header with a low initial value to be increased over the subsequent runs of Certbot renew.

Parameters
- **lineage** (*certbot.interfaces.RenewableCert*) – Certificate lineage object
- **domains** (*list of str*) – List of domains in certificate to enhance
certbot.plugins.storage module

Plugin storage class.

```python
class certbot.plugins.storage.PluginStorage(config, classkey):
    Bases: object

    Class implementing storage functionality for plugins

    save()
    Saves PluginStorage content to disk

    Raises errors.PluginStorageError – when unable to serialize the data or write it to
    the filesystem

    put(key, value)
    Put configuration value to PluginStorage

    Parameters
        • key (str) – Key to store the value to
        • value – Data to store

    fetch(key)
    Get configuration value from PluginStorage

    Parameters
        • key (str) – Key to get value from the storage

    Raises
        - KeyError – If the key doesn’t exist in the storage
```

certbot.plugins.util module

Plugin utilities.

```python
certbot.plugins.util.get_prefixes(path)
    Retrieves all possible path prefixes of a path, in descending order of length. For instance,
    (linux) /a/b/c returns ['/a/b/c', '/a/b', '/a', '/'] (windows) C:abc returns ['C:abc', 'C:ab', 'C:a', 'C:']

    Parameters
        • path (str) – the path to break into prefixes

    Returns
        all possible path prefixes of given path in descending order

    Return type
        list of str

certbot.plugins.util.path_surgery(cmd)
    Attempt to perform PATH surgery to find cmd

    Mitigates https://github.com/certbot/certbot/issues/1833

    Parameters
        • cmd (str) – the command that is being searched for in the PATH

    Returns
        True if the operation succeeded, False otherwise
```

certbot.tests package

Utilities for running Certbot tests
Submodules

certbot.tests.acme_util module

ACME utilities for testing.

certbot.tests.acme_util.gen_combos(challbs)
 Generate natural combinations for challbs.

certbot.tests.acme_util.chall_to_challb(chall, status)
 Return ChallengeBody from Challenge.

certbot.tests.acme_util.gen_authzr(authz_status, domain, challs, statuses, combos=True)
 Generate an authorization resource.

 Parameters
 • authz_status(acme.messages.Status) – Status object
 • challs(list) – Challenge objects
 • statuses(list) – status of each challenge object
 • combos(bool) – Whether or not to add combinations

certbot.tests.util module

Test utilities.

certbot.tests.util.vector_path(*names)
 Path to a test vector.

certbot.tests.util.load_vector(*names)
 Load contents of a test vector.

certbot.tests.util.load_cert(*names)
 Load certificate.

certbot.tests.util.load_csr(*names)
 Load certificate request.

certbot.tests.util.load_comparable_csr(*names)
 Load ComparableX509 certificate request.

certbot.tests.util.load_rsa_private_key(*names)
 Load RSA private key.

certbot.tests.util.load_pyopenssl_private_key(*names)
 Load pyOpenSSL private key.

certbot.tests.util.make_lineage(config_dir, testfile)
 Creates a lineage defined by testfile.

 This creates the archive, live, and renewal directories if necessary and creates a simple lineage.

 Parameters
 • config_dir(str) – path to the configuration directory
 • testfile(str) – configuration file to base the lineage on

 Returns path to the renewal conf file for the created lineage
Return type str
certbot.tests.util.patch_get_utility \(target='zope.component.getUtility'\)
 Patch zope.component.getUtility to use a special mock IDisplay.
 The mock IDisplay works like a regular mock object, except it also also asserts that methods are called with valid arguments.
 Parameters target \(str\) – path to patch
 Returns mock zope.component.getUtility
 Return type mock.MagicMock
certbot.tests.util.patch_get_utility_with_stdout \(target='zope.component.getUtility'\, stdout=None\)
 Patch zope.component.getUtility to use a special mock IDisplay.
 The mock IDisplay works like a regular mock object, except it also also asserts that methods are called with valid arguments.
 The message argument passed to the IDisplay methods is passed to stdout’s write method.
 Parameters
 • target \(str\) – path to patch
 • stdout \(object\) – object to write standard output to; it is expected to have a write method
 Returns mock zope.component.getUtility
 Return type mock.MagicMock
class certbot.tests.util.FreezableMock \(frozen=False,\ func=None,\ return_value=sentinel.DEFAULT\)
 Bases: object
 Mock object with the ability to freeze attributes.
 This class works like a regular mock.MagicMock object, except attributes and behavior set before the object is frozen cannot be changed during tests.
 If a func argument is provided to the constructor, this function is called first when an instance of FreezableMock is called, followed by the usual behavior defined by MagicMock. The return value of func is ignored.
 freeze()
 Freeze object preventing further changes.
class certbot.tests.util.TempDirTestCase \(methodName='runTest'\)
 Bases: unittest.case.TestCase
 Base test class which sets up and tears down a temporary directory
 setUp()
 Execute before test
tearDown()
 Execute after test
class certbot.tests.util.ConfigTestCase \(methodName='runTest'\)
 Bases: certbot.tests.util.TempDirTestCase
 Test class which sets up a NamespaceConfig object.
 setUp()
 Execute before test
certbot.tests.util.lock_and_call(callback, path_to_lock)

Grab a lock on path_to_lock from a foreign process then execute the callback.

:param callable callback: object to call after acquiring the lock
:param str path_to_lock: path to file or directory to lock

certbot.tests.util.skip_on_windows(reason)

Decorator to skip permanently a test on Windows. A reason is required.

certbot.tests.util.temp_join(path)

Return the given path joined to the tempdir path for the current platform Eg.: ‘cert’ => /tmp/cert (Linux) or ‘C:UserscurrentuserAppDataTempcert’ (Windows)

9.1.2 Submodules

certbot.achallenges module

Client annotated ACME challenges.

Please use names such as achall to distinguish from variables “of type” acme.challenges.Challenge (denoted by chall) and ChallengeBody (denoted by challb):

```python
from acme import challenges
from acme import messages
from certbot import achallenges

chall = challenges.DNS(token='foo')
challb = messages.ChallengeBody(chall=chall)
achall = achallenges.DNS(chall=challb, domain='example.com')
```

Note, that all annotated challenges act as a proxy objects:

```python
achall.token == challb.token
```

class certbot.achallenges.AnnotatedChallenge(**kwargs)

Bases: josepy.util.ImmutableMap

Client annotated challenge.

Wraps around server provided challenge and annotates with data useful for the client.

Variables

- **challb** – Wrapped ChallengeBody.

```
acme_type = NotImplemented
```

chall

class certbot.achallenges.KeyAuthorizationAnnotatedChallenge(**kwargs)

Bases: certbot.achallenges.AnnotatedChallenge

Client annotated KeyAuthorizationChallenge challenge.

response_and_validation(*args, **kwargs)

Generate response and validation.

account_key

challb

domain

class certbot.achallenges.DNS(**kwargs)

Bases: certbot.achallenges.AnnotatedChallenge
Client annotated “dns” ACME challenge.

```
acme_type
    alias of acme.challenges.DNS
challb
domain
```

certbot.crypto_util module

Certbot client crypto utility functions.

```
certbot.crypto_util.init_save_key(key_size, key_dir, keyname='key-certbot.pem')
    Initializes and saves a privkey.
    Inits key and saves it in PEM format on the filesystem.

    Parameters
    • key_size (int) – RSA key size in bits
    • key_dir (str) – Key save directory.
    • keyname (str) – Filename of key

    Returns Key
    Return type certbot.util.Key

    Raises ValueError – If unable to generate the key given key_size.
```

certbot.crypto_util.init_save_csr(privkey, names, path)
 Initialize a CSR with the given private key.

 Parameters
 • privkey (certbot.util.Key) – Key to include in the CSR
 • names (set) – str names to include in the CSR
 • path (str) – Certificate save directory.

 Returns CSR
 Return type certbot.util.CSR

certbot.crypto_util.valid_csr(csr)
 Validate CSR.
 Check if csr is a valid CSR for the given domains.

 Parameters csr (str) – CSR in PEM.
 Returns Validity of CSR.
 Return type bool

certbot.crypto_util.csr_matches_pubkey(csr, privkey)
 Does private key correspond to the subject public key in the CSR?
 Parameters
• **csr** (*str*) – CSR in PEM.

 • **privkey** (*str*) – Private key file contents (PEM)

 Returns Correspondence of private key to CSR subject public key.

 Return type bool

certbot.crypto_util.import_csr_file *(csrfile, data)*

 Import a CSR file, which can be either PEM or DER.

 Parameters

 • **csrfile** (*str*) – CSR filename

 • **data** (*str*) – contents of the CSR file

 Returns *(crypto.FILETYPE_PEM, util.CSR object representing the CSR, list of domains requested in the CSR)*

 Return type tuple

certbot.crypto_util.make_key *(bits)*

 Generate PEM encoded RSA key.

 Parameters

 • **bits** (*int*) – Number of bits, at least 1024.

 Returns new RSA key in PEM form with specified number of bits

 Return type str

certbot.crypto_util.valid_privkey *(privkey)*

 Is valid RSA private key?

 Parameters

 • **privkey** (*str*) – Private key file contents in PEM

 Returns Validity of private key.

 Return type bool

certbot.crypto_util.verify_renewable_cert *(renewable_cert)*

 For checking that your certs were not corrupted on disk.

 Several things are checked:

 1. Signature verification for the cert.
 2. That fullchain matches cert and chain when concatenated.
 3. Check that the private key matches the certificate.

 Parameters

 • **renewable_cert** *(certbot.interfaces.RenewableCert)* – cert to verify

 Raises errors.Error – If verification fails.

certbot.crypto_util.verify_renewable_cert_sig *(renewable_cert)*

 Verifies the signature of a RenewableCert object.

 Parameters

 • **renewable_cert** *(certbot.interfaces.RenewableCert)* – cert to verify

 Raises errors.Error – If signature verification fails.

certbot.crypto_util.verify_signed_payload *(public_key, signature, payload, signature_hash_algorithm)*

 Check the signature of a payload.

 Parameters
- **public_key** *(RSAPublicKey/EllipticCurvePublicKey)* – the public_key to check signature

- **signature** *(bytes)* – the signature bytes

- **payload** *(bytes)* – the payload bytes

:param cryptography.hazmat.primitives.hashes.HashAlgorithm signature_hash_algorithm: algorithm used to hash the payload

Raises

- **InvalidSignature** – If signature verification fails.
- **errors.Error** – If public key type is not supported

certbot.crypto_util.verify_cert_matches_priv_key(cert_path, key_path)
Verifies that the private key and cert match.

Parameters

- **cert_path** *(str)* – path to a cert in PEM format
- **key_path** *(str)* – path to a private key file

Raises **errors.Error** – If they don’t match.

certbot.crypto_util.verify_fullchain(renewable_cert)
Verifies that fullchain is indeed cert concatenated with chain.

Parameters **renewable_cert** *(certbot.interfaces.RenewableCert)* – cert to verify

Raises **errors.Error** – If cert and chain do not combine to fullchain.

certbot.crypto_util.pyopenssl_load_certificate(data)
Load PEM/DER certificate.

Raises **errors.Error** –

certbot.crypto_util.get_sans_from_cert(cert, typ=1)
Get a list of Subject Alternative Names from a certificate.

Parameters

- **cert** *(str)* – Certificate (encoded).
- **typ** – crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

Returns A list of Subject Alternative Names.
Return type **list**

certbot.crypto_util.get_names_from_cert(csr, typ=1)
Get a list of domains from a cert, including the CN if it is set.

Parameters

- **cert** *(str)* – Certificate (encoded).
- **typ** – crypto.FILETYPE_PEM or crypto.FILETYPE_ASN1

Returns A list of domain names.
Return type **list**

certbot.crypto_util.dump_pyopenssl_chain(chain, filetype=1)
Dump certificate chain into a bundle.
Parameters chain (list) – List of crypto.X509 (or wrapped in josepy.util.ComparableX509).

certbot.crypto_util.notBefore(cert_path)
When does the cert at cert_path start being valid?
Parameters cert_path (str) – path to a cert in PEM format
Returns the notBefore value from the cert at cert_path
Return type datetime.datetime

certbot.crypto_util.notAfter(cert_path)
When does the cert at cert_path stop being valid?
Parameters cert_path (str) – path to a cert in PEM format
Returns the notAfter value from the cert at cert_path
Return type datetime.datetime

certbot.crypto_util.sha256sum(filename)
Compute a sha256sum of a file.
NB: In given file, platform specific newlines characters will be converted into their equivalent unicode counterparts before calculating the hash.
Parameters filename (str) – path to the file whose hash will be computed
Returns sha256 digest of the file in hexadecimal
Return type str

certbot.crypto_util.cert_and_chain_from_fullchain(fullchain_pem)
Split fullchain_pem into cert_pem and chain_pem
Parameters fullchain_pem (str) – concatenated cert + chain
Returns tuple of string cert_pem and chain_pem
Return type tuple
Raises errors.Error – If there are less than 2 certificates in the chain.

certbot.crypto_util.get_serial_from_cert(cert_path)
Retrieve the serial number of a certificate from certificate path
Parameters cert_path (str) – path to a cert in PEM format
Returns serial number of the certificate
Return type int

certbot.errors module
Certbot client errors.

exception certbot.errors.Error
Bases: exceptions.Exception
Generic Certbot client error.

exception certbot.errors.AccountStorageError
Bases: certbot.errors.Error
Generic AccountStorage error.
exception certbot.errors.AccountNotFound
 Bases: certbot.errors.AccountStorageError
 Account not found error.

exception certbot.errors.ReverterError
 Bases: certbot.errors.Error
 Certbot Reverter error.

exception certbot.errors.SubprocessError
 Bases: certbot.errors.Error
 Subprocess handling error.

exception certbot.errors.CertStorageError
 Bases: certbot.errors.Error
 Generic CertStorage error.

exception certbot.errors.HookCommandNotFound
 Bases: certbot.errors.Error
 Failed to find a hook command in the PATH.

exception certbot.errors.SignalExit
 Bases: certbot.errors.Error
 A Unix signal was received while in the ErrorHandler context manager.

exception certbot.errors.OverlappingMatchFound
 Bases: certbot.errors.Error
 Multiple lineages matched what should have been a unique result.

exception certbot.errors.LockError
 Bases: certbot.errors.Error
 File locking error.

exception certbot.errors.AuthorizationError
 Bases: certbot.errors.Error
 Authorization error.

exception certbot.errors.FailedChallenges (failed_achalls)
 Bases: certbot.errors.AuthorizationError
 Failed challenges error.

 Variables failed_achalls (set) – Failed AnnotatedChallenge instances.

exception certbot.errors.PluginError
 Bases: certbot.errors.Error
 Certbot Plugin error.

exception certbot.errors.PluginEnhancementAlreadyPresent
 Bases: certbot.errors.Error
 Enhancement was already set

exception certbot.errors.PluginSelectionError
 Bases: certbot.errors.Error
 A problem with plugin/configurator selection or setup
exception certbot.errors.NoInstallationError
 Bases: certbot.errors.PluginError
 Certbot No Installation error.

exception certbot.errors.MisconfigurationError
 Bases: certbot.errors.PluginError
 Certbot Misconfiguration error.

exception certbot.errors.NotSupportedException
 Bases: certbot.errors.PluginError
 Certbot Plugin function not supported error.

exception certbot.errors.PluginStorageError
 Bases: certbot.errors.PluginError
 Certbot Plugin Storage error.

exception certbot.errors.StandaloneBindError(socket_error, port)
 Bases: certbot.errors.Error
 Standalone plugin bind error.

exception certbot.errors.ConfigurationError
 Bases: certbot.errors.Error
 Configuration sanity error.

exception certbot.errors.MissingCommandlineFlag
 Bases: certbot.errors.Error
 A command line argument was missing in noninteractive usage

certbot.interfaces module

Certbot client interfaces.

class certbot.interfaces.AccountStorage
 Bases: object
 Accounts storage interface.

 find_all()
 Find all accounts.

 Returns All found accounts.

 Return type list

 load(account_id)
 Load an account by its id.

 Raises
 - `AccountNotFoundError` – if account could not be found
 - `AccountStorageError` – if account could not be loaded

 save(account, client)
 Save account.

 Raises `AccountStorageError` – if account could not be saved
interface certbot.interfaces.IPluginFactory

IPlugin factory.

Objects providing this interface will be called without satisfying any entry point “extras” (extra dependencies) you might have defined for your plugin, e.g (excerpt from setup.py script):

```python
setup(
    ...
    entry_points={
        'certbot.plugins': [
            'name=example_project.plugin[plugin_deps]',
        ],
    },
    extras_require={
        'plugin_deps': ['dep1', 'dep2'],
    }
)
```

Therefore, make sure such objects are importable and usable without extras. This is necessary, because CLI does the following operations (in order):

- loads an entry point,
- calls `inject_parser_options`,
- requires an entry point,
- creates plugin instance (`__call__`).

description

Short plugin description

```python
__call__ (config, name)
```

Create new `IPlugin`.

Parameters

- `config` (`IConfig`) – Configuration.
- `name` (`str`) – Unique plugin name.

inject_parser_options (`parser, name`)

Inject argument parser options (flags).

1. Be nice and prepend all options and destinations with `option_namespace` and `dest_namespace`.
2. Inject options (flags) only. Positional arguments are not allowed, as this would break the CLI.

Parameters

- `parser` (`ArgumentParser`) – (Almost) top-level CLI parser.
- `name` (`str`) – Unique plugin name.

interface certbot.interfaces.IPlugin

Certbot plugin.

prepare ()

Prepare the plugin.

Finish up any additional initialization.

Raises

- `PluginError` – when full initialization cannot be completed.
MisconfigurationError – when full initialization cannot be completed. Plugin will be displayed on a list of available plugins.

NoInstallationError – when the necessary programs/files cannot be located. Plugin will NOT be displayed on a list of available plugins.

NotSupportedError – when the installation is recognized, but the version is not currently supported.

more_info()
Human-readable string to help the user.
Should describe the steps taken and any relevant info to help the user decide which plugin to use.

Rtype str
interface certbot.interfaces.IAuthenticator
Extends: certbot.interfaces.IPlugin
Generic Certbot Authenticator.
Class represents all possible tools processes that have the ability to perform challenges and attain a certificate.

get_chall_pref(domain)
Return collections.Iterable of challenge preferences.
Parameters domain (str) – Domain for which challenge preferences are sought.
Returns collections.Iterable of challenge types (subclasses of acme.challenges.Challenge) with the most preferred challenges first. If a type is not specified, it means the Authenticator cannot perform the challenge.

Return type collections.Iterable
perform(achalls)
Perform the given challenge.
Parameters achalls (list) – Non-empty (guaranteed) list of AnnotatedChallenge instances, such that it contains types found within get_chall_pref() only.
Returns collections.Iterable of ACME ChallengeResponse instances corresponding to each provided Challenge.
Return type collections.Iterable of acme.challenges.ChallengeResponse, where responses are required to be returned in the same order as corresponding input challenges
Raises PluginError – If some or all challenges cannot be performed

cleanup(achalls)
Revert changes and shutdown after challenges complete.
This method should be able to revert all changes made by perform, even if perform exited abnormally.
Parameters achalls (list) – Non-empty (guaranteed) list of AnnotatedChallenge instances, a subset of those previously passed to perform().
Raises PluginError – if original configuration cannot be restored

interface certbot.interfaces.IConfig
Certbot user-supplied configuration.
Warning: The values stored in the configuration have not been filtered, stripped or sanitized.

server
ACME Directory Resource URI.

email
Email used for registration and recovery contact. Use comma to register multiple emails, ex: u1@example.com,u2@example.com. (default: Ask).

rsa_key_size
Size of the RSA key.

must_staple
Adds the OCSP Must Staple extension to the certificate. Autoconfigures OCSP Stapling for supported setups (Apache version >= 2.3.3).

config_dir
Configuration directory.

work_dir
Working directory.

accounts_dir
Directory where all account information is stored.

backup_dir
Configuration backups directory.

csr_dir
Directory where newly generated Certificate Signing Requests (CSRs) are saved.

in_progress_dir
Directory used before a permanent checkpoint is finalized.

key_dir
Keys storage.

temp_checkpoint_dir
Temporary checkpoint directory.

no_verify_ssl
Disable verification of the ACME server’s certificate.

http01_port
Port used in the http-01 challenge. This only affects the port Certbot listens on. A conforming ACME server will still attempt to connect on port 80.

http01_address
The address the server listens to during http-01 challenge.

https_port
Port used to serve HTTPS. This affects which port Nginx will listen on after a LE certificate is installed.

pref_challs
Sorted user specified preferred challengetype strings with the most preferred challenge listed first

allow_subset_of_names
When performing domain validation, do not consider it a failure if authorizations can not be obtained for a strict subset of the requested domains. This may be useful for allowing renewals for multiple domains to succeed even if some domains no longer point at this system. This is a boolean
strict_permissions
 Require that all configuration files are owned by the current user; only needed if your config is somewhere
 unsafe like /tmp/. This is a boolean.

disable_renew_updates
 If updates provided by installer enhancements when Certbot is being run with “renew” verb should be
 disabled.

interface certbot.interfaces.IInstaller
 Extends: certbot.interfaces.IPlugin

Generic Certbot Installer Interface.
Represents any server that an X509 certificate can be placed.

It is assumed that save() is the only method that finalizes a checkpoint. This is important to ensure that
checkpoints are restored in a consistent manner if requested by the user or in case of an error.
Using certbot.reverter.Reverter to implement checkpoints, rollback, and recovery can dramatically
simplify plugin development.

get_all_names()
 Returns all names that may be authenticated.

 Return type collections.Iterable of str

deploy_cert (domain, cert_path, key_path, chain_path, fullchain_path)
 Deploy certificate.

 Parameters
 • domain (str) – domain to deploy certificate file
 • cert_path (str) – absolute path to the certificate file
 • key_path (str) – absolute path to the private key file
 • chain_path (str) – absolute path to the certificate chain file
 • fullchain_path (str) – absolute path to the certificate fullchain file (cert plus chain)

 Raises PluginError – when cert cannot be deployed

enhance (domain, enhancement, options=None)
 Perform a configuration enhancement.

 Parameters
 • domain (str) – domain for which to provide enhancement
 • enhancement (str) – An enhancement as defined in ENHANCEMENTS
 • options – Flexible options parameter for enhancement. Check documentation of
 ENHANCEMENTS for expected options for each enhancement.

 Raises PluginError – If Enhancement is not supported, or if an error occurs during the
 enhancement.

supported_enhancements ()
 Returns a collections.Iterable of supported enhancements.

 Returns supported enhancements which should be a subset of ENHANCEMENTS

 Return type collections.Iterable of str
save (title=None, temporary=False)
Saves all changes to the configuration files.

Both title and temporary are needed because a save may be intended to be permanent, but the save is not ready to be a full checkpoint.

It is assumed that at most one checkpoint is finalized by this method. Additionally, if an exception is raised, it is assumed a new checkpoint was not finalized.

Parameters

- **title** *(str)* – The title of the save. If a title is given, the configuration will be saved as a new checkpoint and put in a timestamped directory. title has no effect if temporary is true.
- **temporary** *(bool)* – Indicates whether the changes made will be quickly reversed in the future (challenges)

Raises **PluginError** – when save is unsuccessful

rollback_checkpoints (rollback=1)
Revert rollback number of configuration checkpoints.

Raises **PluginError** – when configuration cannot be fully reverted

recovery_routine ()
Revert configuration to most recent finalized checkpoint.
Remove all changes (temporary and permanent) that have not been finalized. This is useful to protect against crashes and other execution interruptions.

Raises **errors.PluginError** – If unable to recover the configuration

config_test ()
Make sure the configuration is valid.

Raises **MisconfigurationError** – when the config is not in a usable state

restart ()
Restart or refresh the server content.

Raises **PluginError** – when server cannot be restarted

interface certbot.interfaces.IDisplay
Generic display.

notification *(message, pause=True, wrap=True, force_interactive=False)*
Displays a string message

Parameters

- **message** *(str)* – Message to display
- **pause** *(bool)* – Whether or not the application should pause for confirmation (if available)
- **wrap** *(bool)* – Whether or not the application should wrap text
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

menu *(message, choices, ok_label=None, cancel_label=None, help_label=None, default=None, cli_flag=None, force_interactive=False)*
Displays a generic menu.
When not setting force_interactive=True, you must provide a default value.
Parameters

- **message** *(str)* – message to display
- **choices** *(list of tuple() or str)* – choices
- **ok_label** *(str)* – label for OK button (UNUSED)
- **cancel_label** *(str)* – label for Cancel button (UNUSED)
- **help_label** *(str)* – label for Help button (UNUSED)
- **default** *(int)* – default (non-interactive) choice from the menu
- **cli_flag** *(str)* – to automate choice from the menu, eg “–keep”
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of *(code, index)* where code - str display exit code index - int index of the user’s selection

Raises **errors.MissingCommandLineFlag** – if called in non-interactive mode without a default set

input *(message, default=None, cli_args=None, force_interactive=False)*

Accept input from the user.

When not setting force_interactive=True, you must provide a default value.

Parameters

- **message** *(str)* – message to display to the user
- **default** *(str)* – default (non-interactive) response to prompt
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of *(code, input)* where code - str display exit code input - str of the user’s input

Return type tuple

Raises **errors.MissingCommandLineFlag** – if called in non-interactive mode without a default set

yesno *(message, yes_label=‘Yes’, no_label=‘No’, default=None, cli_args=None, force_interactive=False)*

Query the user with a yes/no question.

Yes and No label must begin with different letters.

When not setting force_interactive=True, you must provide a default value.

Parameters

- **message** *(str)* – question for the user
- **default** *(str)* – default (non-interactive) choice from the menu
- **cli_flag** *(str)* – to automate choice from the menu, eg “–redirect / –no-redirect”
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns True for “Yes”, False for “No”

Return type bool
Raises `errors.MissingCommandlineFlag` – if called in non-interactive mode without a default set

checklist *(message, tags, default=None, cli_args=None, force_interactive=False)*

Allow for multiple selections from a menu.

When not setting `force_interactive=True`, you must provide a default value.

Parameters

- **message** *(str)* – message to display to the user
- **tags** *(list)* – where each is of type `str` len(tags) > 0
- **default** *(str)* – default (non-interactive) state of the checklist
- **cli_flag** *(str)* – to automate choice from the menu, eg “–domains”
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of the form (code, list_tags) where `code` - int display exit code `list_tags` - list of str tags selected by the user

Return type tuple

Raises `errors.MissingCommandlineFlag` – if called in non-interactive mode without a default set

directory_select *(self, message, default=None, cli_flag=None, force_interactive=False)*

Display a directory selection screen.

When not setting `force_interactive=True`, you must provide a default value.

Parameters

- **message** *(str)* – prompt to give the user
- **default** – the default value to return, if one exists, when using the NoninteractiveDisplay
- **cli_flag** *(str)* – option used to set this value with the CLI, if one exists, to be included in error messages given by NoninteractiveDisplay
- **force_interactive** *(bool)* – True if it’s safe to prompt the user because it won’t cause any workflow regressions

Returns tuple of the form (code, string) where `code` - int display exit code `string` - input entered by the user

interface `certbot.interfaces.IReporter`

Interface to collect and display information to the user.

HIGH_PRIORITY

Used to denote high priority messages

MEDIUM_PRIORITY

Used to denote medium priority messages

LOW_PRIORITY

Used to denote low priority messages

add_message *(self, msg, priority, on_crash=True)*

Adds msg to the list of messages to be printed.

Parameters
• **msg**(str) – Message to be displayed to the user.

• **priority**(int) – One of HIGH_PRIORITY, MEDIUM_PRIORITY, or LOW_PRIORITY.

• **on_crash**(bool) – Whether or not the message should be printed if the program exits abnormally.

print_messages(self)
Prints messages to the user and clears the message queue.

```python
class certbot.interfaces.RenewableCert
    Bases: object

    Interface to a certificate lineage.

    cert_path
        Path to the certificate file.
    Return type str

    key_path
        Path to the private key file.
    Return type str

    chain_path
        Path to the certificate chain file.
    Return type str

    fullchain_path
        Path to the full chain file.
        The full chain is the certificate file plus the chain file.
    Return type str

    lineagename
        Name given to the certificate lineage.
    Return type str

    names()
        What are the subject names of this certificate?
        Returns the subject names
    Return type list of str

    Raises **CertStorageError** – if could not find cert file.
```

```python
class certbot.interfaces.GenericUpdater
    Bases: object

    Interface for update types not currently specified by Certbot.

    This class allows plugins to perform types of updates that Certbot hasn’t defined (yet).

    To make use of this interface, the installer should implement the interface methods, and interfaces.GenericUpdater.register(InstallerClass) should be called from the installer code.

    The plugins implementing this enhancement are responsible of handling the saving of configuration checkpoints as well as other calls to interface methods of interfaces.IInstaller such as prepare() and restart()
```
generic_updates(*lineage*, *args*, **kwargs*)

Perform any update types defined by the installer.

If an installer is a subclass of the class containing this method, this function will always be called when “certbot renew” is run. If the update defined by the installer should be run conditionally, the installer needs to handle checking the conditions itself.

This method is called once for each lineage.

Parameters

- **lineage** *(RenewableCert)* – Certificate lineage object

class certbot.interfaces.RenewDeployer
Bases: object

Interface for update types run when a lineage is renewed

This class allows plugins to perform types of updates that need to run at lineage renewal that Certbot hasn’t defined (yet).

To make use of this interface, the installer should implement the interface methods, and interfaces.RenewDeployer.register(InstallerClass) should be called from the installer code.

renew_deploy(*lineage*, *args*, **kwargs*)

Perform updates defined by installer when a certificate has been renewed

If an installer is a subclass of the class containing this method, this function will always be called when a certificate has been renewed by running “certbot renew”. For example if a plugin needs to copy a certificate over, or change configuration based on the new certificate.

This method is called once for each lineage renewed

Parameters

- **lineage** *(RenewableCert)* – Certificate lineage object

certbot.main module

Certbot main public entry point.

certbot.main.main *(cli_args=None)*

Run Certbot.

Parameters

- **cli_args** *(list of str)* – command line to Certbot, defaults to sys.argv[1:]

Returns

- value for sys.exit about the exit status of Certbot

Return type str or int or None

certbot.ocsp package

Tools for checking certificate revocation.

class certbot.ocsp.RevocationChecker *(enforce_openssl_binary_usage=False)*
Bases: object

This class figures out OCSP checking on this system, and performs it.

ocsp_revoked(*cert*)

Get revoked status for a particular cert version.

Parameters

- **cert** *(interfaces.RenewableCert)* – Certificate object

Returns

- True if revoked; False if valid or the check failed or cert is expired.

Return type bool
ocsp_revoked_by_paths\(\text{cert_path, chain_path, timeout=10}\)

Performs the OCSP revocation check

Parameters

- **cert_path** (str) – Certificate filepath
- **chain_path** (str) – Certificate chain
- **timeout** (int) – Timeout (in seconds) for the OCSP query

Returns True if revoked; False if valid or the check failed or cert is expired.

Return type bool

certbot.reverter module

Reverter class saves configuration checkpoints and allows for recovery.

class certbot.reverter.Reverter\(\text{config}\)

Bases: object

Reverter Class - save and revert configuration checkpoints.

This class can be used by the plugins, especially Installers, to undo changes made to the user’s system. Modifications to files and commands to do undo actions taken by the plugin should be registered with this class before the action is taken.

Once a change has been registered with this class, there are three states the change can be in. First, the change can be a temporary change. This should be used for changes that will soon be reverted, such as config changes for the purpose of solving a challenge. Changes are added to this state through calls to `add_to_temp_checkpoint()` and reverted when `revert_temporary_config()` or `recovery_routine()` is called.

The second state a change can be in is in progress. These changes are not temporary, however, they also have not been finalized in a checkpoint. A change must become in progress before it can be finalized. Changes are added to this state through calls to `add_to_checkpoint()` and reverted when `recovery_routine()` is called.

The last state a change can be in is finalized in a checkpoint. A change is put into this state by first becoming an in progress change and then calling `finalise_checkpoint()`. Changes in this state can be reverted through calls to `rollback_checkpoints()`.

As a final note, creating new files and registering undo commands are handled specially and use the methods `register_file_creation()` and `register_undo_command()` respectively. Both of these methods can be used to create either temporary or in progress changes.

Note: Consider moving everything over to CSV format.

Parameters

- **config** (certbot.interfaces.IConfig) – Configuration.

revert_temporary_config()

Reload users original configuration files after a temporary save.

This function should reinstall the users original configuration files for all saves with temporary=True

Raises ReverterError – when unable to revert config

rollback_checkpoints(rollback=1)

Revert ‘rollback’ number of configuration checkpoints.
Parameters **rollback** (**int**) – Number of checkpoints to reverse. A str num will be cast to an integer. So “2” is also acceptable.

Raises `ReverterError` – if there is a problem with the input or if the function is unable to correctly revert the configuration checkpoints

add_to_temp_checkpoint (**save_files**, **save_notes**)
Add files to temporary checkpoint.

Parameters
- **save_files** (**set**) – set of filepaths to save
- **save_notes** (**str**) – notes about changes during the save

add_to_checkpoint (**save_files**, **save_notes**)
Add files to a permanent checkpoint.

Parameters
- **save_files** (**set**) – set of filepaths to save
- **save_notes** (**str**) – notes about changes during the save

register_file_creation (**temporary**, *files*)
Register the creation of all files during certbot execution.

Call this method before writing to the file to make sure that the file will be cleaned up if the program exits unexpectedly. (Before a save occurs)

Parameters
- **temporary** (**bool**) – If the file creation registry is for a temp or permanent save.
- *files* – file paths (**str**) to be registered

Raises `certbot.errors.ReverterError` – If call does not contain necessary parameters or if the file creation is unable to be registered.

register_undo_command (**temporary**, **command**)
Register a command to be run to undo actions taken.

Parameters
- **temporary** (**bool**) – Whether the command should be saved in the IN_PROGRESS or TEMPORARY checkpoints.
- **command** (**list of str**) – Command to be run.

Warning: This function does not enforce order of operations in terms of file modification vs. command registration. All undo commands are run first before all normal files are reverted to their previous state. If you need to maintain strict order, you may create checkpoints before and after the command registration. This function may be improved in the future based on demand.

recovery_routine()
Revert configuration to most recent finalized checkpoint.

Remove all changes (temporary and permanent) that have not been finalized. This is useful to protect against crashes and other execution interruptions.

** Raises** `errors.ReverterError` – If unable to recover the configuration
finalize_checkpoint *(title)*
Finalize the checkpoint.

Timestamps and permanently saves all changes made through the use of `add_to_checkpoint()` and `register_file_creation()`

Parameters
- **title** *(str)* – Title describing checkpoint
- **Raises** `certbot.errors.ReverterError` – when the checkpoint is not able to be finalized.

certbot.util module

Utilities for all Certbot.

class `certbot.util.Key`(file, pem)

Bases: tuple

- **file**
 - Alias for field number 0
- **pem**
 - Alias for field number 1

class `certbot.util.CSR`(file, data, form)

Bases: tuple

- **data**
 - Alias for field number 1
- **file**
 - Alias for field number 0
- **form**
 - Alias for field number 2

certbot.util.run_script *(params, log=<bound method Logger.error of <logging.Logger object>>)*

Run the script with the given params.

Parameters
- **params** *(list)* – List of parameters to pass to `Popen`
- **log** *(callable)* – Logger method to use for errors

certbot.util.exe_exists *(exe)*

Determine whether path/name refers to an executable.

Parameters
- **exe** *(str)* – Executable path or name
- **Returns** If exe is a valid executable

Return type bool

certbot.util.lock_dir_until_exit *(dir_path)*

Lock the directory at `dir_path` until program exit.

Parameters
- **dir_path** *(str)* – path to directory
- **Raises** `errors.LockError` – if the lock is held by another process

certbot.util.set_up_core_dir *(directory, mode, strict)*

Ensure directory exists with proper permissions and is locked.

Parameters
• directory (str) – Path to a directory.
• mode (int) – Directory mode.
• strict (bool) – require directory to be owned by current user

Raises
• errors.LockError – if the directory cannot be locked
• errors.Error – if the directory cannot be made or verified

certbot.util.make_or_verify_dir(directory, mode=493, strict=False)
Make sure directory exists with proper permissions.

Parameters
• directory (str) – Path to a directory.
• mode (int) – Directory mode.
• strict (bool) – require directory to be owned by current user

Raises
• errors.Error – if a directory already exists, but has wrong permissions or owner
• OSError – if invalid or inaccessible file names and paths, or other arguments that have the correct type, but are not accepted by the operating system.

certbot.util.safe_open(path, mode='w', chmod=None)
Safely open a file.

Parameters
• path (str) – Path to a file.
• mode (str) – Same as mode for open.
• chmod (int) – Same as mode for filesystem.open, uses Python defaults if None.

certbot.util.unique_file(path, chmod=511, mode='w')
Safely finds a unique file.

Parameters
• path (str) – path/filename.ext
• chmod (int) – File mode
• mode (str) – Open mode

Returns tuple of file object and file name

certbot.util.unique_lineage_name(path, filename, chmod=420, mode='w')
Safely finds a unique file using lineage convention.

Parameters
• path (str) – directory path
• filename (str) – proposed filename
• chmod (int) – file mode
• mode (str) – open mode

Returns tuple of file object and file name (which may be modified from the requested one by appending digits to ensure uniqueness)
Raises OSError – if writing files fails for an unanticipated reason, such as a full disk or a lack of permission to write to specified location.

certbot.util.safely_remove(path)
Remove a file that may not exist.

certbot.util.get_filtered_names(all_names)
Removes names that aren’t considered valid by Let’s Encrypt.

Parameters all_names (set) – all names found in the configuration

Returns all found names that are considered valid by LE

Return type set

certbot.util.get_os_info()
Get OS name and version

Returns (os_name, os_version)

Return type tuple of str

certbot.util.get_os_info_ua()
Get OS name and version string for User Agent

Returns os_ua

Return type str

certbot.util.get_systemd_os_like()
Get a list of strings that indicate the distribution likeness to other distributions.

Returns List of distribution acronyms

Return type list of str

certbot.util.get_var_from_file(varname, filepath='/etc/os-release')
Get single value from a file formatted like systemd /etc/os-release

Parameters

• varname (str) – Name of variable to fetch
• filepath (str) – File path of os-release file

Returns requested value

Return type str

certbot.util.get_python_os_info(pretty=False)
Get Operating System type/distribution and major version using python platform module

Parameters pretty (bool) – If the returned OS name should be in longer (pretty) form

Returns (os_name, os_version)

Return type tuple of str

certbot.util.safe_email(email)
Scrub email address before using it.

certbot.util.add_deprecated_argument(add_argument, argument_name, nargs)
Adds a deprecated argument with the name argument_name.

Deprecated arguments are not shown in the help. If they are used on the command line, a warning is shown stating that the argument is deprecated and no other action is taken.

Parameters
• **add_argument** (*callable*) – Function that adds arguments to an argument parser/group.

• **argument_name** (*str*) – Name of deprecated argument.

• **nargs** – Value for nargs when adding the argument to argparse.

certbot.util.enforce_le_validity(*domain*)

Checks that Let’s Encrypt will consider domain to be valid.

- **Parameters**
 - *domain* (*str* or *unicode*) – FQDN to check

- **Returns**
 - The domain cast to *str*, with ASCII-only contents

- **Return type** *str*

- **Raises** *ConfigurationError* – for invalid domains and cases where Let’s Encrypt currently will not issue certificates

certbot.util.enforce_domain_sanity(*domain*)

Method which validates domain value and errors out if the requirements are not met.

- **Parameters**
 - *domain* (*str* or *unicode*) – Domain to check

- **Raises** *ConfigurationError* – for invalid domains and cases where Let’s Encrypt currently will not issue certificates

- **Returns**
 - The domain cast to *str*, with ASCII-only contents

- **Return type** *str*

certbot.util.is_wildcard_domain(*domain*)

“Is domain a wildcard domain?”

- **Parameters**
 - *domain* (*bytes* or *str* or *unicode*) – domain to check

- **Returns**
 - True if domain is a wildcard, otherwise, False

- **Return type** *bool*

certbot.util.get_strict_version(*normalized*)

Converts a normalized version to a strict version.

- **Parameters**
 - *normalized* (*str*) – normalized version string

- **Returns**
 - An equivalent strict version

- **Return type** *distutils.version.StrictVersion*

certbot.util.is_staging(*srv*)

Determine whether a given ACME server is a known test / staging server.

- **Parameters**
 - *srv* (*str*) – the URI for the ACME server

- **Returns**
 - True iff srv is a known test / staging server

- **Return type** *bool*

certbot.util.atexit_register(*func, *args, **kwargs*)

Sets func to be called before the program exits.

Special care is taken to ensure func is only called when the process that first imports this module exits rather than any child processes.

- **Parameters**
 - *func* (*function*) – function to be called in case of an error
CHAPTER
TEN

INDICES AND TABLES

• genindex
• modindex
• search
C

certbot, 57
certbot.achallenges, 86
certbot.compat, 57
certbot.compat.filesystem, 57
certbot.compat.misc, 59
certbot.compat.os, 59
certbot.crypto_util, 87
certbot.display, 69
certbot.display.ops, 69
certbot.display.util, 71
certbot.errors, 90
certbot.interfaces, 92
certbot.main, 101
certbot.ocsp, 101
certbot.plugins, 75
certbot.plugins.common, 75
certbot.plugins.dns_common, 78
certbot.plugins.dns_common_lexicon, 79
certbot.plugins.dns_test_common, 80
certbot.plugins.dns_test_common_lexicon, 80
certbot.plugins.enhancements, 81
certbot.plugins.storage, 83
certbot.plugins.util, 83
certbot.reverter, 102
certbot.tests, 83
certbot.tests.acme_util, 84
certbot.tests.util, 84
certbot.util, 104
Symbols

__call__() (certbot.interfaces.IPluginFactory method), 93

A

abort() (in module certbot.compat.os), 60
access() (in module certbot.compat.os), 60
account_key (certbot.achallenges.KeyAuthorizationAnnotatedChallenge attribute), 86
AccountNotFound, 90
accounts_dir (certbot.interfaces.IConfig attribute), 95
AccountStorage (class in certbot.interfaces), 92
AccountStorageError, 90
achall (certbot.plugins.dns_test_common.BaseAuthenticatorTest attribute), 80
acme_type (certbot.achallenges.AnnotatedChallenge attribute), 86
acme_type (certbot.achallenges.DNS attribute), 87
add_chall() (certbot.plugins.common.ChallengePerformer method), 77
add_deprecated_argument() (in module certbot.util), 106
add_message() (certbot.interfaces.IReporter method), 99
add_parser_arguments() (certbot.plugins.common.Plugin class method), 75
add_parser_arguments() (certbot.plugins.dns_common.DNSAuthenticator class method), 78
add_to_checkpoint() (certbot.plugins.common.Installer method), 76
add_to_checkpoint() (certbot.reverter.Reverter method), 103
add_to_temp_checkpoint() (certbot.reverter.Reverter method), 103
add_txt_record() (certbot.plugins.dns_common_lexicon.LexiconClient method), 79
Addr (class in certbot.plugins.common), 77
allow_subset_of_names (certbot.interfaces.IConfig attribute), 95
AnnotatedChallenge (class in certbot.achallenges), 86
are_requested() (in module certbot.plugins.enhancements), 81
are_supported() (in module certbot.plugins.enhancements), 81
assert_valid_call() (in module certbot.display.util), 73
atexit_register() (in module certbot.util), 107
AuthorizationError, 91
AutoHSTSEnhancement (class in certbot.plugins.enhancements), 82

B

backup_dir (certbot.interfaces.IConfig attribute), 95
base_domain_name_guesses() (in module certbot.plugins.dns_common), 79
BaseAuthenticatorTest (class in certbot.plugins.dns_common), 79
BaseLexiconAuthenticatorTest (class in certbot.plugins.dns_common_lexicon), 80
BaseLexiconClientTest (class in certbot.plugins.dns_common_lexicon), 80
build_lexicon_config() (in module certbot.plugins.dns_common_lexicon), 79

C

cancel (in module certbot.display.util), 71
cert_and_chain_from_fullchain() (in module certbot.crypto_util), 90
cert_path (certbot.interfaces.RenewableCert attribute), 100
certbot (module), 57
certbot.achallenges (module), 86
certbot.compat (module), 57
certbot.compat.filesystem (module), 57
certbot.compat.misc (module), 59
certbot.compat.os (module), 59
certbot.crypto_util (module), 87
certbot.display (module), 69
certbot.display.ops (module), 69
certbot.display.util (module), 71
certbot.errors (module), 90
certbot.interfaces (module), 92
certbot.main (module), 101
certbot.ocsp (module), 101
certbot.plugins (module), 75
minor() (in module certbot.compat.os), 63
MisconfigurationError, 92
MissingCommandLineFlag, 92
mkdir() (in module certbot.compat.filesystem), 58
mkdir() (in module certbot.compat.os), 60
mkfifo() (in module certbot.compat.os), 63
mknod() (in module certbot.compat.os), 63
more_info() (certbot.interfaces.IPlugin method), 94
must_staple (certbot.interfaces.IConfig attribute), 95

n_fields (certbot.compat.os.stat_result attribute), 64
n_fields (certbot.compat.os.statvfs_result attribute), 65
n_sequence_fields (certbot.compat.os.stat_result attribute), 64
n_sequence_fields (certbot.compat.os.statvfs_result attribute), 66
n_unnamed_fields (certbot.compat.os.stat_result attribute), 64
n_unnamed_fields (certbot.compat.os.statvfs_result attribute), 66
names() (certbot.interfaces.RenewableCert method), 100
nice() (in module certbot.compat.os), 63
no_verify_ssl (certbot.interfaces.IConfig attribute), 95
NoInstallationError, 91
NoninteractiveDisplay (class in certbot.display.util), 73
normalized_tuple() (certbot.plugins.common.Addr method), 77
notAfter() (in module certbot.crypto_util), 90
notBefore() (in module certbot.crypto_util), 90
notification() (certbot.display.util.FileDisplay method), 71
notification() (certbot.display.util.NoninteractiveDisplay method), 73
notification() (certbot.interfaces.IDisplay method), 97
NotSupportedError, 92

O
ocsp_revoked() (certbot.ocsp.RevocationChecker method), 101
ocsp_revoked_by_paths() (certbot.ocsp.RevocationChecker method), 101
OK (in module certbot.display.util), 71
open() (in module certbot.display.util), 58
open() (in module certbot.compat.filesystem), 58
openpty() (in module certbot.compat.os), 63
openpty() (in module certbot.compat.os), 63
option_name() (certbot.plugins.common.Plugin method), 76
option_namespace (certbot.plugins.common.Plugin attribute), 76
option_namespace() (in module certbot.plugins.common), 75
OverlappingMatchFound, 91
P
patch_get_utility() (in module certbot.tests.util), 85
patch_get_utility_with_stdout() (in module certbot.tests.util), 85
patch_surgery() (in module certbot.plugins.util), 83
pathconf() (in module certbot.compat.os), 63
pem (certbot.util.Key attribute), 104
perform() (certbot.interfaces.IAuthenticator method), 94
perform() (certbot.plugins.common.ChallengePerformer method), 77
perform() (certbot.plugins.dns_common.DNSAuthenticator method), 78
pipe() (in module certbot.compat.os), 63
Plugin (class in certbot.plugins.common), 75
PluginEnhancementAlreadyPresent, 91
PluginError, 91
PluginSelectionError, 91
PluginStorage (class in certbot.plugins.storage), 83
PluginStorageError, 92
popen() (in module certbot.compat.os), 63
popen2() (in module certbot.compat.os), 69
popen3() (in module certbot.compat.os), 69
popen4() (in module certbot.compat.os), 69
populate_cli() (in module certbot.plugins.enhancements), 82
pref_challs (certbot.interfaces.IConfig attribute), 95
prepare() (certbot.interfaces.IPlugin method), 93
prepare() (certbot.plugins.dns_common.DNSAuthenticator method), 78
print_messages() (certbot.interfaces.IReporter method), 100
put() (certbot.plugins.storage.PluginStorage method), 83
putenv() (in module certbot.compat.os), 63
pyopenssl_load_certificate() (in module certbot.crypto_util), 89
R
raise_for_non_administrative_windows_rights() (in module certbot.compat.misc), 59
read() (in module certbot.compat.os), 63
readline_with_timeout() (in module certbot.compat.misc), 59
realpath() (in module certbot.compat.filesystem), 58
record_content (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute), 81
record_name (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute), 80
record_prefix (certbot.plugins.dns_test_common_lexicon.BaseLexiconClientTest attribute), 80
recovery_routine() (certbot.interfaces.IInstaller method), 97
recovery_routine() (certbot.plugins.common.Installer method), 76
Index 117
W

wait() (in module certbot.compat.os), 66
wait3() (in module certbot.compat.os), 66
wait4() (in module certbot.compat.os), 67
waitpid() (in module certbot.compat.os), 67
walk() (in module certbot.compat.os), 67
WCOREDUMP() (in module certbot.compat.os), 60
WEXITSTATUS() (in module certbot.compat.os), 60
WIFCONTINUED() (in module certbot.compat.os), 60
WIFEXITED() (in module certbot.compat.os), 60
WIFSIGNALED() (in module certbot.compat.os), 60
WIFSTOPPED() (in module certbot.compat.os), 60
work_dir (certbot.interfaces.IConfig attribute), 95
write() (in module certbot.compat.os), 67
write() (in module certbot.plugins.dns_test_common), 80
WSTOPSIG() (in module certbot.compat.os), 60
WTERMSIG() (in module certbot.compat.os), 60

Y

yesno() (certbot.display.util.FileDisplay method), 72
yesno() (certbot.display.util.NoninteractiveDisplay method), 74
yesno() (certbot.interfaces.IDisplay method), 98